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This document gathers notes on tkz-elements, a comprehensive Lua library designed to
handle all necessary computations for constructing objects in Euclidean geometry. The
document must be compiled with LuaLATEX.

With tkz-elements, all definitions and calculations are carried out exclusively in Lua,
following an object-oriented programming model. Core geometric entities such as points,
lines, triangles, and conics are implemented as object classes.
Once the computations are complete, graphical rendering is typically handled using
tkz-euclide, although you may also use TikZ directly if desired.

I discovered Lua and object-oriented programming while developing this package, so it’s
possible that some parts could be improved. If you’d like to contribute or offer suggestions,
feel free to contact me by email.
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Nicolas Kisselhoff, David Carlisle, Roberto Giacomelli and Qrrbrbirlbel.
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+ You can find some examples on my site and a french documentation: altermundus.fr.

Please report typos or any other comments to this documentation to: Alain Matthes.
This file can be redistributed and/or modified under the terms of the LATEX Project Public License Distributed
from CTAN archives.
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1. Getting started

1.1. The first code

A quick introduction to get you started. We assume that the packages tkz-euclide and tkz-elements are
installed. Compile the following code using the lualatex engine; you should obtain a straight line passing
through points 𝐴 and 𝐵.

Note. The package tkz-elements performs all geometric definitions and computations in Lua, while tkz-
euclide is mainly used for drawing. For this reason, the mini option of tkz-euclide is recommended. If a
compilation problem occurs, simply load tkz-euclide without this option.

% !TEX TS-program = lualatex
\documentclass{article}
\usepackage[mini]{tkz-euclide}
\usepackage{tkz-elements}
\begin{document}
\directlua{

init_elements()
z.A = point(0, 1)
% or z.A = point:new(0, 1)
z.B = point(2, 0)

}
\begin{tikzpicture}
\tkzGetNodes
\tkzDrawLine(A,B)
\tkzDrawPoints(A,B)
\tkzLabelPoints(A,B)
\end{tikzpicture}
\end{document}

𝐴

𝐵

1.2. Key points

The following points are essential for most of the codes in this documentation.

– % !TEX TS-program = lualatex. Compilation must be performed with lualatex. This line is optional
if your editor is already configured accordingly.

– \usepackage[mini]{tkz-euclide}. The use of tkz-euclide is optional; however, if it is loaded, the
mini option is recommended. It loads only the drawing macros, while all computations are handled by
lua. Important: at the current stage, some drawing macros are not yet fully independent of computation
macros. If a compilation problem occurs, simply load tkz-euclide without the mini option.

– \usepackage{tkz-elements}. This package is required. It provides the Lua-based geometry engine and
support macros used together with tkz-euclide.

– \directlua{...}. All geometric definitions and computations are placed inside this macro (or within a
tkzelements environment).

– init_elements(). This function should be called at the beginning of each Lua section. It resets internal
tables and clears global variables used by tkz-elements.

– \tkzGetNodes. This macro must be placed at the beginning of the tikzpicture environment. It transfers
the points defined in Lua to TikZ as usable nodes.

1.3. Testing

To test your installation and follow the examples in this documentation, you need to load two packages: tkz-
euclide and tkz-elements. The first package automatically loads TikZ, which is necessary for all graphical
rendering.
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The Lua code is provided as an argument to the \directlua macro. We will often refer to this code block as
the Lua part 1. This part depends entirely on the tkz-elements package.
A crucial component in the tikzpicture environment is the macro \tkzGetNodes. This macro transfers the
points defined in Lua to TikZ by creating the corresponding nodes. All such points are stored in a table named
z and are accessed using the syntax z.label. These labels are then reused within tkz-euclide.
When you define a point by assigning it a label and coordinates, it is internally represented as a complex number
— the affix of the point. This representation allows the point to be located within an orthonormal Cartesian
coordinate system.
If you want to use a different method for rendering your objects, this is the macro to modify. For example,
Section 37 presents \tkzGetNodesMP, a variant that enables communication with MetaPost.
Another essential element is the use of the function init_elements(), which clears internal tables2 when
working with multiple figures.
If everything worked correctly with the previous code, you’re ready to begin creating geometric objects. Sec-
tion 10 introduces the available options and object structures.
Finally, it is important to be familiar with basic drawing commands in tkz-euclide, as they will be used to
render the objects defined in Lua.

1 This code can also be placed in an external file, e.g., file.lua.
2 All geometric objects are stored in Lua tables. These tables must be cleaned regularly, especially when creating multiple figures in

sequence.
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2. Structure

The package defines two macros \tkzGetNodes and \tkzUseLua.
Additionally, the package loads the file tkz_elements_main.lua. This file initializes all the tables used by the
modules in which the classes are defined. It also defines the function init_elements(), which resets all tables.

tkz-elements.sty

tkz_elements_main Regular
_Polygon

Quadri-
lateral

Para-
llelogram

RectangleMatrix

Vector

Point

Line

Circle

Triangle

Conic Square

OCCS

Path

The current classes are:
point (z), circle (C), line (L), matrix (M), occs (O), parallelogram (P), quadrilateral (Q), rectangle
(R), square (S), triangle (T), vector (V), conic (CO), regular_polygon (RP) and path (PA).

The variable in parentheses indicates the name typically assigned to the table containing objects of the corre-
sponding class.
If name refers to a class, its definition can be found in the file tkz_elements_name.lua.
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3. Why tkz-elements?

The tkz-elements package was created to address two key challenges in geometric work with TeX. First, TeX
alone lacks the numerical precision and flexibility required for complex geometric calculations. By leveraging
Lua, tkz-elements provides accurate and stable computations for operations such as intersections, projections,
and transformations.
Second, the package introduces an object-oriented approach to geometry. Geometric entities—such as points,
vectors, lines, circles, and conics—are modeled as structured objects with associated methods. This allows users
to express geometric relationships in a more natural and readable way, similar to mathematical language.
Beyond these two core ideas, tkz-elements offers several additional benefits:

– Simplified computations: Lua’s floating-point arithmetic and expressive syntax make geometric calcula-
tions much easier to write and understand than in pure TeX.

– Extensibility: Thanks to its modular design and use of classes, new geometric objects and methods can
be added with minimal effort, making the package scalable and adaptable.

– Interoperability: Calculated points and data integrate smoothly with TikZ or other TeX drawing tools,
allowing users to combine computation and visualization effectively.

– Pedagogical clarity: With its structured and expressive syntax, tkz-elements is well-suited for educational
purposes, where clarity of construction and notation is essential.

Altogether, tkz-elements provides a modern, object-oriented, and Lua-powered framework for geometric con-
structions within the TeX ecosystem.

3.1. Calculation accuracy

3.1.1. Calculation accuracy in TikZ

With TikZ, the expression veclen(x,y) calculates the expression√𝑥2+𝑦2. This calculation is achieved through
a polynomial approximation, drawing inspiration from the ideas of Rouben Rostamian.

pgfmathparse{veclen(65,72)} \pgfmathresult

+ √652+722 ≈ 96.9884 .

3.1.2. Calculation accuracy in Lua

A luaveclen macro can be defined as follows:

\def\luaveclen#1#2{\directlua{tex.print(string.format(
'\percentchar.5f',math.sqrt((#1)*(#1)+(#2)*(#2))))}}

and

\luaveclen{65}{72}

gives:
+ √652+722 = 97 !!

The error, though insignificant when it comes to the placement of an object on a page by a hundredth of a
point, becomes problematic for the results of mathematical demonstrations. Moreover, these inaccuracies can
accumulate and lead to erroneous constructions.
To address this lack of precision, I initially introduced the fp, followed by the package xfp. More recently, with
the emergence of LuaLATEX, I incorporated a Lua option aimed at performing calculations with Lua.
This was the primary motivation behind creating the package, with the secondary goal being the introduction of
object-oriented programming (OOP) and simplifying programming with Lua. The concept of OOP persuaded
me to explore its various possibilities further.
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At that time, I had received some Lua programming examples from tkzPoptNicolas Kisselhoff, but I strug-
gled to understand the code initially, so I dedicated time to studying Lua patiently. Eventually, I was able to
develop tkz-elements, incorporating many of his ideas that I adapted for the package.

3.1.3. Using objects

Subsequently, I came across an article by Roberto Giacomelli3 on object-oriented programming using Lua and
TikZ tools. This served as my second source of inspiration. Not only did this approach enable programming to
be executed step-by-step, but the introduction of objects facilitated a direct link between the code and geometry.
As a result, the code became more readable, explicit, and better structured.

3.1.4. Example: Apollonius circle (new version 2025/05/12)

Problem: The objective is to identify an inner tangent circle to the three exinscribed circles of a triangle.

For additional information, you can consult the corresponding entry on MathWorld. This example was used as
a reference to test the tkz-euclide package. Initially, the results obtained with basic methods and available
tools lacked precision. Thanks to tkz-elements, more powerful and accurate tools are now available — and
they are also easier to use. The core principles of figure construction with tkz-euclide remain unchanged:
definitions, calculations, drawings, and labels, all following a step-by-step process that mirrors classical compass-
and-straightedge constructions. This version takes advantage of the simplest construction method enabled by
Lua.

\directlua{
init_elements()
z.A = point(0, 0)
z.B = point(6, 0)
z.C = point(0.8, 4)
T.ABC = triangle(z.A, z.B, z.C)
z.N = T.ABC.eulercenter
z.S = T.ABC.spiekercenter
T.feuerbach = T.ABC:feuerbach()
z.Ea, z.Eb, z.Ec = T.feuerbach:get()
T.excentral = T.ABC:excentral()
z.Ja, z.Jb, z.Jc = T.excentral:get()
C.JaEa = circle(z.Ja, z.Ea)

% C.ortho = circle:radius(z.S, math.sqrt(C.JaEa:power(z.S)))
C.ortho = C.JaEa:orthogonal_from(z.S) % 2025/05/12
z.a = C.ortho.through
C.euler = T.ABC:euler_circle()
C.apo = C.ortho:inversion(C.euler)
z.O = C.apo.center
z.xa, z.xb, z.xc = C.ortho:inversion(z.Ea, z.Eb, z.Ec)}

Creating an object involves defining its attributes and methods — that is, its properties and the actions it can
perform. Once created, the object is associated with a name (or reference) by storing it in a table. This table
acts as an associative array, linking a key (the reference) to a value (the object itself). These concepts will be
explored in more detail later.
For instance, suppose T is a table that associates the triangle object with the key ABC. Then T.ABC refers to
another table containing the attributes of the triangle — such as its vertices, sides, or angles — each accessible
via a specific key. These attributes are predefined within the package to support geometric operations.

z.N = T.ABC.eulercenter

3 Grafica ad oggetti con LuaTEX

tkz-elements AlterMundus

https://mathworld.wolfram.com/ApolloniusCircle.html
https://www.guitex.org/home/images/meeting2012/slides/presentazione_giacomell_guitmeeting_2012.pdf


3. Why tkz-elements? 24

N is the name of the point, eulercenter is an attribute of the triangle. 4

T.excentral = T.ABC:excentral()

In this context, excentral is a method associated with the T.ABC object. It defines the triangle formed by the
centers of the exinscribed circles.

Deprecated Code

Note: This code has been replaced by a more elegant version.
Two lines were particularly noteworthy. The first demonstrates how the exceptional precision of Lua
allows a radius to be defined through a complex computation.
The radius of the radical circle is given by:

√Π(𝑆,𝒞(𝐽𝑎,𝐸𝑎))

(the square root of the power of the point 𝑆 with respect to the exinscribed circle centered at Ja and
passing through Ea).

C.ortho = circle: radius (z.S,math.sqrt(C.JaEa: power(z.S)))

Revised Code

Note: The following code replaces the previous version with a more elegant and object-oriented ap-
proach. The previous code demonstrated the kinds of calculations that can be performed manually.
However, tkz-elements offers a wide range of methods associated with the various geometric objects.
Among the methods related to circles is one that allows you to define a circle orthogonal to another,
given a center point.
We want to obtain the circle orthogonal to the three exinscribed circles of the triangle. Its center (𝑆)
is the radical center of these three circles. It suffices to compute a circle orthogonal to one of them a,
taking as center the point 𝑆.
The second important line performs an inversion with respect to this orthogonal circle.

C.ortho = C.JaEa:orthogonal_from(z.S)

a Given a main circle and two secondary circles, a specific method exists for defining the radical circle orthogonal to all three.

Lastly, it’s worth noting that the inversion of the Euler circle with respect to the radical circle yields the
Apollonius circle.5
This transformation requires an object as a parameter. The method automatically detects the object type (as
all objects in the package are typed) and selects the appropriate algorithm accordingly.

C.apo = C.ortho:inversion(C.euler)

Now that all relevant points have been defined, it is time to begin drawing the geometric paths. To do this, the
corresponding nodes must first be created. This is precisely the role of the macro \tkzGetNodes.
The subsequent section exclusively deals with drawings, and is managed by tkz-euclide.

\begin{tikzpicture}
\tkzGetNodes
\tkzFillCircles[green!30](O,xa)
\tkzFillCircles[teal!30](Ja,Ea Jb,Eb Jc,Ec)

4 The center of the Euler circle, or center of the nine-point circle, is a characteristic of every triangle.
5 The nine-point circle, also known as Euler’s circle, is externally tangent to the three exinscribed circles. The points of tangency form

the Feuerbach triangle.
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\tkzFillCircles[lightgray](S,a)
\tkzFillCircles[green!30](N,Ea)
\tkzDrawPoints(xa,xb,xc)
\tkzDrawCircles(Ja,Ea Jb,Eb Jc,Ec S,a O,xa N,Ea)
\tkzClipCircle(O,xa)
\tkzDrawLines[add=3 and 3](A,B A,C B,C)
\tkzDrawPoints(O,A,B,C,S,Ea,Eb,Ec,N)
\tkzDrawSegments[dashed](S,xa S,xb S,xc)
\tkzLabelPoints(O,N,A,B)
\tkzLabelPoints[right](S,C)

\end{tikzpicture}

𝑂𝑁

𝐴 𝐵

𝑆

𝐶
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4. Presentation

4.1. Geometric Construction Philosophy

tkz-elements is built around the principles of classical Euclidean geometry, emphasizing constructions achiev-
able with an unmarked straightedge and a compass. The library favors a declarative and geometric approach
over algebraic or numeric definitions.
This philosophy means that all geometric objects — points, lines, circles, triangles, and so on — are primarily
defined by other points. Explicit numerical values such as coordinates, distances, or angles are deliberately
avoided unless they are essential to the construction. This is in line with a traditional ruler-and-compass
mindset, where geometric reasoning emerges from visual configurations and not from numbers.
For example:

– A circle is defined by its center and a point on the circumference,

– A perpendicular bisector is constructed using midpoint and symmetry,

– An angle is inferred from three points rather than given as a numeric value.

This design decision also explains why constructors based on scalar values, such as OCCS (One Center and a
Scalar), are not part of the default interface. Their use would introduce numerical dependency at odds with the
intended geometric abstraction.

While tkz-elements promotes a high-level, point-based approach to geometry, it relies internally on Lua for
performing all necessary calculations. Lua is not exposed to the user as a scripting tool, but rather serves as a
powerful computational engine that enables precise and robust geometric operations behind the scenes.
This separation of concerns allows users to focus entirely on geometric constructions while benefiting from Lua’s
computational precision and performance. In the next section, we will explain how Lua integrates with LATEX
in the context of this package — not as a programming layer, but as an invisible partner enabling advanced
constructions.

4.2. With Lua

The primary purpose of tkz-elements is to perform geometric computations and define points using Lua. You
can think of it as a computational kernel that can be used by either tkz-euclide or directly with TikZ.
Lua code can be executed in two ways: directly, using the \directlua primitive, or within a tkzelements
environment based on the luacode package (which must be loaded separately). When using \directlua,
especially in complex documents, you can reset internal data structures — such as coordinate tables and scaling
factors — using the init_elements() function.
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The key points are:

– The source file must be + UTF-8 encoded.

– Compilation must be performed with + LuaLATEX.

– You need to load tkz-euclide and tkz-elements.

– All definitions and calculations are carried out in an
occs (orthonormal cartesian coordinate system,) us-
ing Lua either via the macro \directlua or within
the tkzelements environment.

On the right, you will find a minimal template.
The code is divided into two main parts: the Lua code (ex-
ecuted using \directlua or placed inside a tkzelements
environment), and the tikzpicture environment, where
drawing commands — typically from tkz-euclide — are
issued.
When using tkz-euclide, the mini option is recom-
mended, as it loads only the macros required for drawing.
However, at the current stage, some drawing macros are
not yet completely independent of computation macros; if
a compilation problem occurs, simply load tkz-euclide
without this option.
Within the Lua section, it is best practice to systematically
call the init_elements() function. This function resets
internal tables and clears internal data structures. Im-
portant: from this point on, all scaling operations must
be avoided in the Lua code.

% !TEX TS-program = lualatex
% Created by Alain Matthes
\documentclass{standalone}
\usepackage[mini]{tkz-euclide}
% or simply TikZ
\usepackage{tkz-elements}
begin{document}

\directlua{
init_elements()
% definition of some points
z.A = point( , )
z.B = point( , )
% or
z.A = point:new( , )
z.B = point:new( , )

...code...
}

\begin{tikzpicture}
% points transfer to Nodes
% from Lua to tikz (tkz-euclide)
\tkzGetNodes

\end{tikzpicture}
\end{document}

4.3. The main process

Transfers
\tkzGetNodes

Drawings
tkz-euclide

TikZ

Definitions
Calculations
tkz-elements

After obtaining all the necessary points for the drawing, they must be transformed into nodes so that TikZ or
tkz-euclide can render the figure. This is accomplished using the macro \tkzGetNodes. This macro iterates
through all the elements of the table z using the key (which is essentially the name of the point) and retrieves
the associated values, namely the coordinates of the point (node).
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4.4. Complete example: Pappus circle

4.4.1. The figure

𝐴 𝐵𝐶𝑂0𝑂1 𝑂2

𝑃

𝑄

𝑃0𝑃0

𝑃1
𝑃2

𝑂

4.4.2. The code

% !TEX TS-program = lualatex
\documentclass{article}
\usepackage[mini]{tkz-euclide} % mini = only tracing function
\usepackage{tkz-elements}
\begin{document}

\directlua{
init_elements() % Clear tables
z.A = point(0, 0)
z.B = point(10, 0) % creation of two fixed points $A$ and $B$
L.AB = line(z.A, z.B)
z.C = L.AB:gold_ratio() % use of a method linked to “line”
z.O_0 = line(z.A, z.B).mid % midpoint of segment with an attribute of “line”
z.O_1 = line(z.A, z.C).mid % objects are not stored and cannot be reused.
z.O_2 = line(z.C, z.B).mid
C.AB = circle(z.O_0, z.B) % new object “circle” stored and reused
C.AC = circle(z.O_1, z.C)
C.CB = circle(z.O_2, z.B)
z.P = C.CB.north % “north” atrributes of a circle
z.Q = C.AC.north
z.O = C.AB.south
z.c = z.C:north(2) %“north” method of a point (needs a parameter)
C.PC = circle(z.P, z.C)
C.QA = circle(z.Q, z.A)
z.P_0 = intersection(C.PC,C.AB) % search for intersections of two circles.
z.P_1 = intersection(C.PC,C.AC) % idem
_,z.P_2 = intersection(C.QA,C.CB) % idem
T.P = triangle(z.P_0, z.P_1, z.P_2)
z.O_3 = T.P.circumcenter % circumcenter attribute of “triangle”

}

\begin{tikzpicture}
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\tkzGetNodes
\tkzDrawCircle[black,fill=yellow!20,opacity=.4](O_0,B)
\tkzDrawCircles[teal,fill=teal!40,opacity=.6](O_1,C O_2,B)
\tkzDrawCircle[purple,fill=purple!20,opacity=.4](O_3,P_0)
\tkzDrawArc[cyan,delta=10](Q,A)(P_0)
\tkzDrawArc[cyan,delta=10](P,P_0)(B)
\tkzDrawArc[cyan,delta=10](O,B)(A)
\tkzDrawPoints(A,B,C,O_0,O_1,O_2,P,Q,P_0,P_0,P_1,P_2,O)
\tkzLabelPoints(A,B,C,O_0,O_1,O_2,P,Q,P_0,P_0,P_1,P_2,O)

\end{tikzpicture}
\end{document}

4.5. Another example with comments: South Pole

Here’s another example with comments

% !TEX TS-program = lualatex
\documentclass{standalone}
\usepackage[mini]{tkz-euclide}
\usepackage{tkz-elements}
\begin{document}
\directlua{
init_elements() % Clear tables
z.A = point(2, 4)
z.B = point(0, 0) % three fixed points are used
z.C = point(8, 0) %
T.ABC = triangle(z.A, z.B, z.C) % we create a new triangle object
C.ins = T.ABC:in_circle() % we get the incircle of this triangle
z.I = C.ins.center % center is an attribute of the circle
z.T = C.ins.through % through is also an attribute
z.I, z.T = C.ins:get() % get() is a shortcut
C.cir = T.ABC:circum_circle() % we get the circumscribed circle
z.W = C.cir.center % we get the center of this circle
z.O = C.cir.south % now we get the south pole of this circle
L.AO = line(z.A, z.O) % we create an object "line"
L.BC = T.ABC.bc % we get the line (BC)
z.I_A = intersection(L.AO, L.BC) % we search the intersection of the last lines

}
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Here’s the tikzpicture environment to obtain the drawing:

\begin{tikzpicture}
\tkzGetNodes
\tkzDrawCircles(W,A I,T)
\tkzDrawArc(O,C)(B)
\tkzDrawPolygon(A,B,C)
\tkzDrawSegments[new](A,O B,O C,O)
\tkzDrawLine(B,I)
\tkzDrawPoints(A,B,C,I,I_A,W,O)
\tkzFillAngles[green!20,opacity=.3](A,O,B A,C,B)
\tkzFillAngles[teal!20,opacity=.3](O,B,C B,C,O B,A,O O,A,C)
\tkzLabelPoints(I,I_A,W,B,C,O)
\tkzLabelPoints[above](A)
\end{tikzpicture}
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5. Writing Convention, best practices and common mistakes

5.1. Assigning a Name to an Object

Note: Certain variables such as z, L, T, etc. are reserved for storing geometric objects. Reassigning one of them
(e.g., L = 4) will overwrite its content and disrupt the system.
Points are a special case: they must be stored in the table z. For all other geometric objects, it is strongly
recommended to follow the predefined variable names. Avoid mixing naming conventions or inventing your own
identifiers, as this may lead to unpredictable behavior.

+Warning: Do not reuse names such as point, line, circle, path, triangle, etc., as variable names. These
identifiers are reserved internally by tkz-elements to represent object constructors.

Below is the list of reserved classes and the default variable names associated with them:

angle –> A
circle –> C
conic –> CO
fct –> F
pfct –> PF
line –> L
list_point –> LP
matrix –> M
occs –> O
parallelogram –> P
path –> PA
point –> z
quadrilateral –> Q
rectangle –> R
regular_polygon –> RP
square –> S
triangle –> T
vector –> V

5.2. Best practices

It is preferable to use methods—or better yet, object attributes—rather than standalone functions.
For example, to determine the midpoint of a segment 𝐴𝐵, iit was previously possible to write:
z.m = midpoint(z.A, z.B). This is now considered incorrect: you must use
z.m = tkz.midpoint(z.A, z.B).
However, the recommended approach is to define the segment first with:
L.AB = line(z.A, z.B), and then use the attribute:
z.m = line(z.A, z.B).mid. If you don’t reuse the line, a one-liner like z.m = line(z.A, z.B).mid is accept-
able.

Similarly, it may have been tempting to write L.bi = tkz.bisector(z.A, z.B, z.C) to obtain the angle
bisector at vertex 𝐴. As in the previous example, this is no longer valid. You must now use:
L.bi = tkz.bisector(z.A, z.B, z.C), as all standalone functions have been grouped under the tkz module.
A better practice is to define the triangle 𝐴𝐵𝐶 using:
T.ABC = triangle(z.A, z.B, z.C) and then access the bisector via:
L.bi = T.ABC:bisector(z.A) or directly:
L.bi = triangle(z.A, z.B, z.C):bisector(z.A).

5.3. Common mistakes and best practices

+Second Warning: Let’s examine the consequences of incorrect assignments. The following example is very
simple: we define two points, the line passing through them, and a line orthogonal to the first at one of the

tkz-elements AlterMundus



5. Writing Convention, best practices and common mistakes 32

points. To define these objects, we use two tables (or classes): z and L.
Here is the correct code:

\directlua{
z.A = point(1, 2)
z.B = point(3, -1)
L.AB = line(z.A, z.B)
-- blunders
L.ortho = L.AB:ortho_from(z.B)
z.C = L.ortho.pb

}
\begin{tikzpicture}[scale = .75]

\tkzGetNodes
\tkzDrawLines(A,B B,C)
\tkzDrawPoints(A,B)

\end{tikzpicture}

– First blunder: z = nil or z = 4. You’ve reassigned the z variable. It no longer refers to a table, but
to a number. Its type has changed, and the system can no longer access the points.

– z.A = 4 is equally problematic: you’ve overwritten point 𝐴. If your intention is to remove point 𝐴, then
use z.A = nil instead.

– L = 4. This might seem convenient to store a length, but doing so will erase the entire table of lines.

– L.ortho = ortho. A more subtle mistake: if ortho is not defined, you lose your line. If it is defined but
of the wrong type, an error will occur.

– For objects other than points, incorrect assignments at the end of the process may not affect the figure.
It is possible to clean up tables before plotting. However, the z table must not be altered. Only points
not used for plotting should be deleted.

These precautions help ensure consistency in the system and prevent unpredictable behavior.

We’ll now explain how to assign variable names for each type of object.

5.4. Assigning a Name to a Point

Points must be stored in the table z if you intend to use them later in TikZ or tkz-euclide. In tkz-elements,
all points follow the convention z.name, where name is the intended node label.

When transferring points to TikZ using \tkzGetNodes, each entry z.name produces the corresponding coordi-
nate:

\coordinate (name) at (x,y);

Some naming cases require attention, particularly those involving primes.

Prime notation. The macro \tkzGetNodes converts certain terminal patterns in Lua names into prime or
double-prime notation in TikZ.

– A name ending in p becomes a single prime:

z.Bp = point(...) → node (B')

– A name ending in pp becomes a double prime:

z.Bpp = point(...) → node (B'')
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This convention is convenient for geometric constructions but may lead to unexpected renaming if the final p
or pp is not intended as prime notation.

Warning

Avoid names ending with p or pp unless you explicitly want prime or double-prime notation in TikZ.

You can work with all these names in the lua section, but an error will occur when transferring points to nodes
with the \tkzGetNodes macro. To avoid errors, use one of the solutions in the following paragraph. For z.p,
simply using z.P is sufficient. The lowercase letter can be retrieved with TikZ.

Intermediate names. For readability or when working with long or descriptive names in Lua, you may use
an intermediate variable and optionally assign a short label for the drawing.
For instance:

local euler = point(...) z.E = euler

Here, the point is internally stored under the clear name euler, but it appears as node (E) in TikZ.
If you prefer to keep the long name in both Lua and TikZ, simply write:

z.euler = point(...)

Alternatively, you may assign an alias at the TikZ level:

\pgfnodealias{E}{euler}

Possible also, Before the transfer, we use an accepted name such as A and remove the point z.apollonius with
z.apollonius = nil.

z.A = z.apollonius z.apollonius = nil

Valid examples.

– z.A = point(1,2) → node (A)

– z.Bp = point(3,4) → node (B')

– z.Cpp = point(5,1) → node (C'')

– z.H_a = T.ABC:altitude() → node (H_a)

– z.euler = T.ABC.eulercenter → node (euler)

Names may contain letters, digits, and “_”. Other characters should be avoided because they may not form
valid TikZ node names.

Lua reminder. Fields of the table z may be accessed as:

– z.A (sugar syntax), or

– z["A"]

Assigning z.A = nil removes the point entirely.
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5.5. Assigning a Name to Other Objects

For all geometric objects other than points, you are free to choose names. However, adopting consistent conven-
tions greatly improves code readability and maintainability. To be more precise, each Lua code block is usually
preceded by the call to the function init_elements(), whose role is to clear and reset the various tables (such
as L, C, etc.). If you choose to use custom variable names or structures, you are free to do so — but in that
case, you are responsible for managing and cleaning your variables and tables manually to avoid conflicts or
unintended behavior.
In this documentation, the following naming strategy is used:
Objects are stored in dedicated tables, each associated with a specific class. These tables are represented by
variables such as:

– L for lines and segments

– C for circles

– T for triangles

– CO for conics (including ellipses, hyperbolas, and parabolas)

– etc. See the list of reserved words [5.1]
Here are some examples of naming conventions used:

– Lines (L):
The name reflects the two points defining the line.
Example: L.AB = line(z.A, z.B) – line through A and B

– Circle (C)
You can name a circle based on its defining points or its purpose. Examples:
– C.AB –> Circle centered at A, passing through B
– C.euler –> Euler circle
– C.external –> External circle

– Triangles (T)
Use vertex labels, or descriptive names when appropriate. Examples:
– T.ABC –> Triangle with vertices A, B, C
– T.feuerbach –> Feuerbach triangle

– Conics (CO)
The table CO can store various conics; use meaningful keys to indicate type and role.

Note: While you may choose other variable names or formats, following these conventions ensures that
your code remains clear and easy to follow, especially when working with more complex figures.

5.6. Writing conventions for attributes, methods.

You must follow standard Lua conventions when accessing attributes or invoking methods:

– Attributes are accessed using the dot notation: object.attribute.
– For example, to access the coordinates of point A, use z.A.re for the abscissa and z.A.im for the

ordinate.
– To get the type of the object, write z.A.type.
– To retrieve the south pole of the circle C.OA, write C.OA.south.

– Methods are invoked using the colon notation: object:method().
– For example, to compute the incircle of triangle ABC, use: C.incircle = T.ABC:in_circle().
– If a method requires a parameter, include it in parentheses. For instance, to compute the distance

from point C to the line (AB): d = L.AB:distance(z.C).

– Discarding results: If a function returns multiple values and you only need one, use _ to ignore the rest.
– For example, to retrieve only the second point of intersection between a line and a circle: _, z.J = intersection(L.AB, C.OC).
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5.7. Miscellaneous

– Units and coordinates: As in tkz-euclide, the default unit is the centimeter. All points are placed
in an orthonormal Cartesian coordinate system.

– Numerical variables: Real numbers follow the standard Lua conventions for notation.

– Complex numbers: Similar to real numbers, but you must define them using the point constructor. For
example:
za = point(1, 2)

This corresponds mathematically to 1+2𝑖. You can print the complex number using:
tex.print(tostring(za))

– Boolean values:

– In Lua: bool = true or bool = false

– You can use the following Lua code:
if bool == true then ... else ... end

– In LaTeX, after loading the ifthen package, you can write:
\ifthenelse{\equal{\tkzUseLua{bool}}{true}}{<true code>}{<false code>}

– Strings:

– Example in Lua: st = "Euler's formula"

– In LaTeX: \tkzUseLua{st} will display Euler's formula

6. Work organization

Here is a sample organization for working with tkz-euclide and LuaLATEX.

– Compilation: Add the line:
% !TEX TS-program = lualatex

to ensure that your document compiles with LuaLATEX.

– Document Class: The standalone class is recommended when the goal is simply to create a figure, as it
avoids unnecessary overhead.

– Package Loading: You can load tkz-euclide in two ways:
– \usepackage{tkz-euclide} gives you full access to the entire package.
– The recommended method is to use the mini option, which loads only the necessary modules for

drawing. You still retain the ability to draw with TikZ if desired.

– Conditionals: The package ifthen is useful when you need to evaluate Boolean conditions within your
document.

– Lua Code Organization: While you can embed Lua code directly with \directlua, externalizing the
code offers several advantages:
– Better syntax highlighting and code presentation in editors that support Lua and LATEX.
– Simplified commenting: Lua uses --, while LATEX uses %. Keeping Lua in a separate file avoids

confusion.
– Reusability: external code files can be reused across multiple documents or figures.

tkz-elements AlterMundus



6. Work organization 36

For simplicity, this documentation uses embedded Lua code in most cases. However, in some examples, external
files are used to show you how it’s done.

% !TEX TS-program = lualatex
% Created by Alain Matthes on 2024-01-09.
\documentclass[margin = 12pt]{standalone}
\usepackage[mini]{tkz-euclide}
\usepackage{tkz-elements,ifthen}

\begin{document}
\directlua{
init_elements() % Clear tables
dofile ("lua/sangaku.lua") % Load the lua code

}
\begin{tikzpicture}[ scale = .75]
\tkzGetNodes
\tkzDrawCircle(I,F)
\tkzFillPolygon[color = purple](A,C,D)
\tkzFillPolygon[color = blue!50!black](A,B,C)
\tkzFillCircle[color = orange](I,F)

\end{tikzpicture}
\end{document}

And here is the code for the Lua part: the file ex_sangaku.lua

z.A = point(0, 0)
z.B = point(8, 0)
L.AB = line(z.A, z.B)
S.AB = L.AB:square()
_, _, z.C, z.D = S.AB:get()
z.F = S.ac:projection(z.B)
L.BF = line(z.B, z.F)
T.ABC = triangle(z.A, z.B, z.C)
L.bi = T.ABC:bisector(2)
z.c = L.bi.pb
L.Cc = line(z.C, z.c)
z.I = intersection(L.Cc, L.BF)

6.1. Scaling Policy Update

In previous versions, it was recommended to apply scaling within the Lua part of the code. However, this
guidance has now changed.
Since all geometric computations are handled in Lua, applying scaling in TikZ no longer presents any issues.
On the contrary, performing scaling in Lua has led to several complications—particularly with the recent im-
plementation of conic-related functions, which involve numerous distance calculations using real numbers.
These challenges prompted a review of several functions, during which some bugs related to Lua-side scaling
were identified and resolved.

New Recommendation: From now on, scaling should be applied exclusively in the TikZ part. The Lua
code should operate in an unscaled, consistent coordinate system to ensure the reliability of all geometric
computations.
The following documentation uses only scaling in the tikzpicture environment.
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7. Coordinates

This section outlines the various coordinate systems available to users. Given the removal of scaling operations
from the Lua layer, such clarification seems more necessary than ever.

7.1. Common Use of Coordinates

As with tkz-euclide, tkz-elements is based on a two-dimensional orthonormal Cartesian coordinate system,
using centimeters as the default unit.
It would be inconsistent to use what we will see as an occs (orthogonal coordinate coordinate system) in a
context focused on Euclidean geometry.
Moreover, the concept of a point in tkz-elements is tied to the affix of a complex number. To maintain code
clarity and consistency, the option to modify units within Lua has been deliberately omitted.

Conclusion: For any figure created with tkz-elements, all points are placed within a 2D orthonormal system
using centimeters.

𝑂

𝑀 ∶ 𝑧𝑀 =2+3𝑖

2

3

Coordinates of 𝑀

z.A = point(2, 3)

7.2. Use of barycentric coordinates.

A barycentric coordinate system describes the position of a point relative to a reference triangle. Any point in
the plane can be expressed with barycentric coordinates, which are defined up to a scalar multiple (homothety).
Alternatively, they may be normalized so their sum equals 1.
Barycentric coordinates are particularly useful in triangle geometry, especially when analyzing properties in-
variant under affine transformations—those not dependent on angles.
Consider a triangle 𝐴𝐵𝐶. One can define key points like the centroid and orthocenter using barycentric coor-
dinates.

About the Orthocenter.
Computing barycentric coordinates for the orthocenter requires knowledge of the triangle’s angles. These are
stored as attributes in the table T.ABC:

– T.ABC.alpha — angle b𝐴 at vertex 𝐴

– T.ABC.beta — angle b𝐵 at vertex 𝐵

– T.ABC.gamma — angle b𝐶 at vertex 𝐶

See [14.6.3]

Retrieving Barycentric Coordinates.
It is possible to compute the barycentric coordinates of a given point with respect to a triangle. The returned
values are automatically normalized. See Section [14.5.1] for usage.

𝐴

𝐵
𝐺

𝐶

𝐻

\directlua{
z.A = point(0, 0)
z.B = point(3, 1)
z.C = point(1, 3)
T.ABC = triangle(z.A, z.B, z.C)
z.G = T.ABC:barycentric(1, 1, 1)
z.H = T.ABC:barycentric(math.tan(T.ABC.alpha),

math.tan(T.ABC.beta),
math.tan(T.ABC.gamma))}
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7.3. Use of Trilinear Coordinates

The trilinear coordinates of a point 𝑃 with respect to a triangle 𝐴𝐵𝐶 are a triple of values proportional to
the directed distances from 𝑃 to each of the triangle’s sides. These coordinates are homogeneous and typically
written as 𝑥 ∶ 𝑦 ∶ 𝑧 or (𝑥,𝑦,𝑧).
Since only the ratio between the coordinates is relevant, trilinear coordinates are particularly well suited for
expressing geometric relationships that are invariant under scaling.
So 𝑎′ ∶ 𝑏′ ∶ 𝑐 ′ =𝑘𝑎 ∶ 𝑘𝑏 ∶ 𝑘𝑐 in the next example (𝑎 =𝐵𝐶,𝑏 =𝐴𝐶,𝑐 =𝐴𝐵).

𝐴 𝐵

𝐶

𝐿
𝑘𝑎𝑘𝑏

𝑘𝑐

\directlua{
z.A = point(0, 0)
z.B = point(5, 0)
z.C = point(1, 3)
T.ABC = triangle(z.A, z.B, z.C)
z.L = T.ABC:trilinear(T.ABC.a,

T.ABC.b,
T.ABC.c)

z.a, z.b, z.c = T.ABC:projection(z.L)}

7.4. OCCS

Objects in this class are orthonormal Cartesian coordinate system. They are obtained from the reference
system by translation and rotation. They can be used to simplify certain expressions and coordinates. See [15
]

8. Numerical Tolerance

8.1. Floating-Point Arithmetic

All computations in tkz-elements are performed using floating-point arithmetic. As a consequence, exact
comparisons between real numbers are unreliable.
For example, a point theoretically lying on a line may produce a very small non-zero value due to rounding
errors.

8.2. Global Tolerance: tkz.epsilon

To ensure numerical robustness, tkz-elements uses a global tolerance parameter:
tkz.epsilon = 1e-10
This value defines the admissible numerical error in geometric tests (collinearity, incidence, equality of distances,
etc.).

By default, this tolerance is set to a small positive value. It can be adjusted by advanced users if needed.

8.3. Usage in Position Tests

All membership and position tests are EPS-aware. When a method accepts an optional argument EPS, the
following rule applies:

– If EPS is provided, it overrides the global tolerance.

– Otherwise, tkz.epsilon is used.

This design ensures consistency across all geometric objects.

9. Geometric Relations API

9.1. General Principle

In tkz-elements, geometric objects provide a unified method

object:position(other_object[, EPS])
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to classify a geometric relation.
The result depends on the type of the second argument (other_object).

All position tests are tolerance-aware. If not specified, the optional parameter EPS defaults to the global value
tkz.epsilon.

Convention: All classification results are returned as uppercase symbolic strings, intended for logical com-
parison in Lua code.

9.2. Point vs Object

When the tested object is a point, the result describes membership relative to a region (or a boundary).

Possible return values:

"IN" strictly inside the region,
"ON" on the boundary (within tolerance),
"OUT" strictly outside the region.

Examples:

– circle:position(point) ("IN", "ON", "OUT")

– triangle:position(point) ("IN", "ON", "OUT")

– conic:position(point) ("IN", "ON", "OUT")

– line:position(point) ("ON" or "OUT")

9.3. Object vs Object

When both arguments are geometric objects, the result describes their mutual geometric relation.

Line vs Line

"INTERSECT" lines intersect at one point,
"PARALLEL" distinct parallel lines,
"IDENTICAL" identical lines.

Line vs Circle

"DISJOINT" no intersection,
"TANGENT" exactly one common point,
"SECANT" two intersection points.

Circle vs Circle

"DISJOINT_EXT" exterior disjoint circles,
"TANGENT_EXT" exterior tangency,
"SECANT" two intersection points,
"TANGENT_INT" interior tangency,
"DISJOINT_INT" one circle strictly inside the other,
"CONCENTRIC" same center, different radii,
"IDENTICAL" identical circles.

9.4. Triangle and Conic

For triangle and conic, the method position() currently supports point arguments only.

Triangle vs Point

"IN" strictly inside the triangle,
"ON" on an edge or a vertex,
"OUT" outside the triangle.
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Conic vs Point

"IN" inside the conic region (according to its type),
"ON" on the conic curve,
"OUT" outside the associated region.

Note: For hyperbolas and parabolas, the meaning of "IN" and "OUT" depends on the region associated with
the conic type and its construction data (focus/directrix or equivalent representation).

9.5. Design Philosophy

– A single polymorphic method centralizes geometric classification.

– Uppercase symbolic results ensure clarity and stability.

– Numerical tolerance improves robustness near boundary cases.

– The API is extensible: additional object types may be supported over time.

– Backward compatibility wrappers may be provided when older boolean methods existed in previous ver-
sions.
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10. Class and Object

10.1. Class

Object-Oriented Programming (OOP) is a programming paradigm based on the concept of objects. An object
is a data structure that contains both attributes (data) and methods (operations), which together define its
behavior.

A class is a user-defined data type that serves as a blueprint for creating objects. It specifies the structure and
shared behavior of a category of objects, including default values for attributes and common implementations
of methods6.

10.2. Object

An object is an instance of a class. Each object encapsulates attributes and methods. Attributes store infor-
mation or properties specific to the object (typically as fields in a data table), while methods define how the
object behaves or interacts with other objects.

All objects in the package are typed. The currently defined and used types are: point, line, circle, triangle,
conic, quadrilateral, square, rectangle, parallelogram, regular_polygon, occs and path.

10.2.1. Creating an object

Objects are generally created using the method new, by providing points as arguments.

– The point class requires two real numbers (coordinates),

– The regular_polygon class requires two points and an integer (the number of sides),

– The occs class requires a line and a point,

– The path class requires a table of points written as strings.

Each object is usually assigned a name and stored in a table according to its type. For example:

– points are stored in the global table z,

– lines in L, circles in C, triangles in T, and so on.

This convention allows easy access and reusability across computations and drawings. For example:

z.A = point(1, 2)
z.B = point(4, 5)
L.AB = line(z.A, z.B)

Here, z.A and z.B store points in table z, while the line defined by these points is stored as L.AB in table L.

+ Note:
From version 4 onwards, object creation has been streamlined. Instead of calling object:new(arguments), you
can simply use object(arguments) — the shorter form is equivalent.

z.A = point(1, 2) -- short form
-- equivalent to:
z.A = point:new(1, 2)

Objects can also be generated by applying methods to existing objects. For instance, T.ABC:circum_circle()
produces a new circle object. Some object attributes are themselves objects: T.ABC.bc returns a line
representing side BC of triangle ABC.

6 An action that an object can perform.

tkz-elements AlterMundus



10. Class and Object 42

+ Important:
All these named objects are stored in global tables. To avoid conflicts or residual data between figures, it is
strongly recommended to call the function at the beginning of each construction. This resets the environment
and ensures a clean setup. See the next section

10.2.2. Initialization: init_elements

Before performing geometric constructions or calculations, it is important to initialize the system. The function
init_elements() resets internal tables and parameters to prepare for a new figure. This step ensures a clean
environment and avoids interference from previously defined objects.

init_elements()

Purpose. The function init_elements clears global tables such as:

– z — for storing points,

– L, C, T, etc. — for lines, circles, triangles,

– and other geometric structures.

It also (re)sets default values for internal constants such as the number of decimal digits and the floating-point
tolerance.

When to use it:
This function should be called:

– at the beginning of each new TikZ figure using Lua,

– or any time you need to reset the environment manually.

Example usage.
Here is a typical usage:

\directlua{
init_elements()
z.A = point(0, 0)
z.B = point(3, 4)
L.AB = line(z.A, z.B)}

Note.
Calling init_elements is optional if you manage object names carefully, but it is highly recommended in
iterative workflows or automated figure generation to avoid unwanted data persistence.

10.2.3. Attributes

Attributes are accessed using the standard method. For example, T.pc retrieves the third point of the triangle,
and C.OH.center retrieves the center of the circle. Additionally, I have added a method get() that returns the
points of an object. This method applies to straight lines (pa and pc), triangles (pa, pb, and pc), and circles
(center and through).

Example usage: : z.O, z.T = C.OT:get() retrieves the center and a point of the circle.

10.2.4. Methods

A method is an operation (function or procedure) associated (linked) with an object.
Example: The point object is used to vertically determine a new point object located at a certain distance from
it (here 2). Then it is possible to rotate objects around it.
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\directlua{
init_elements()
z.A = point(1, 0)
z.B = z.A:north(2)
z.C = z.A:rotation (math.pi / 3, z.B)
tex.print(tostring(z.C))

}

The coordinates of 𝐶 are: -0.73205080756888 and 1.0
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11. Class point

A point in tkz-elements is internally represented as a complex number (its affix). This choice enables concise
computations (translation, rotation, scaling) while remaining compatible with TikZ/tkz-euclide for rendering.
The variable z holds a table used to store points. It is mandatory and is automatically initialized by the
package (e.g.,z = {}).

The point class forms the foundation of the entire framework. It is a hybrid class, representing both points in
the plane and complex numbers. The underlying principle is as follows:

– The plane is equipped with an orthonormal basis (OCCS See [15]), allowing us to determine a point’s
position via its abscissa and ordinate.

– Similarly, any complex number can be seen as an ordered pair of real numbers (its real and imaginary
parts).

– Therefore, the plane can be identified with the complex plane, and a complex number 𝑥+𝑖𝑦 is represented
by a point in the plane with coordinates (𝑥,𝑦).

Thus, a point such as 𝐴 is stored as the object z.A, with its coordinates and associated properties encapsulated
within this object.

The point object possesses several attributes:

– re –> the real part (abscissa),

– im –> the imaginary part (ordinate),

– type –> the type of the object (in this case, always "point"),

– arg –> the argument of the complex number (angle with respect to the x-axis),

– mod –> the modulus of the complex number (distance from the origin).

11.1. Creating a point

Points are created by providing their coordinates in the current orthonormal Cartesian coordinate system
(OCCS). The recommended form is:

z.A = point(x, y)

where x and y are real numbers corresponding to the 𝑥 and 𝑦 coordinates of the point.

Internally, this creates a complex number 𝑥+𝑖𝑦 and stores it in the table z under the key "A". The table z is
used to reference all points by their label.

Alternatively, the more explicit syntax is also available:

z.A = point:new(x, y)

Both forms are equivalent. The shorthand constructor is available since version 4 and preferred for readability
and consistency.
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Arguments
re (real)

im (real)
type = 'point'

argument (rad)

modulus (cm)

mtx (matrix)

Methods
homothety(coeff,obj)

rotation(angle, object)

symmetry (object)
…

Class Point
Arguments
re = 1
im = 2

type = 'point'

argument = atan(2)

modulus = √5
mtx = {{1},{2}}

Methods
homothety(coeff,obj)

rotation(angle, object)

symmetry (object)
…

object z.A

11.2. Attributes of a point

Creation
z.A = point(1, 2)

The point 𝐴 has coordinates 𝑥 = 1 and 𝑦 = 2. If you use the notation z.A, then 𝐴 will be referenced as a node
in TikZ or in tkz-euclide.
This is the creation of a fixed point with coordinates 1 and 2 and which is named 𝐴. The notation z.A indicates
that the coordinates will be stored in a table assigned to the variable z (reference to the notation of the affixes
of the complex numbers) that 𝐴 is the name of the point and the key allowing access to the values.

Table 1: Point attributes.
Attributes Description Example / Reference

type Object type name, always "point"
re Real part (i.e., 𝑥-coordinate) [10.2.4]
im Imaginary part (i.e., 𝑦-coordinate) [10.2.4]
argument Argument of the affix (angle in radians) ≈ 0.785398... [11.2.1]
modulus Modulus of the affix (distance to origin) √5≈ 2.2360... [11.2.1]
mtx Matrix representation as column vector z.A.mtx = {{1},{2}} [11.2.1]

11.2.1. Example: point attributes

\directlua{
init_elements()
z.M = point(1, 2)}

\begin{tikzpicture}[scale = 1]
\pgfkeys{/pgf/number format/.cd,std,precision=2}
\let\pmpn\pgfmathprintnumber
\tkzDefPoints{2/4/M,2/0/A,0/0/O,0/4/B}
\tkzLabelPoints(O)
\tkzMarkAngle[fill=gray!30,size=1](A,O,M)
\tkzLabelAngle[pos=1,right](A,O,M){%

$\theta \approx \pmpn{\tkzUseLua{z.M.argument}}$ rad}
\tkzDrawSegments(O,M)
\tkzLabelSegment[above,sloped](O,M){%

$|z_M| =\sqrt{5}\approx \pmpn{%
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\tkzUseLua{z.M.modulus}}$ cm}
\tkzLabelPoint[right](M){$M: z_M = 1 + 2i$}
\tkzDrawPoints(M,A,O,B)
\tkzPointShowCoord(M)
\tkzLabelPoint[below,teal](A){$\tkzUseLua{z.M.re}$}
\tkzLabelPoint[left,teal](B){$\tkzUseLua{z.M.im}$}
\tkzDrawSegments[->,add = 0 and 0.25](O,B O,A)
\end{tikzpicture}

𝑂

𝜃 ≈ 1.11 rad

|𝑧 𝑀
| =

√ 5
≈
2.
24

cm

𝑀 ∶ 𝑧𝑀 =1+2𝑖

1

2

Attributes of z.M

– z.M.re = 1
– z.M.im = 2
– z.M.type = point
– z.M.argument = 𝜃 ≈ 1.11 rad
– z.M.modulus = |𝑧𝑀| = √5 ≈

2.24 cm

– z.M.mtx = [12]

11.2.2. Attribute mtx

This attribute allows the point to be used in conjunction with matrices.

\directlua{
z.A = point(2, -1)
z.A.mtx:print()}

[ 2
−1]

11.2.3. Argand diagram

\directlua{
init_elements()
z.A = point(2, 3)
z.O = point(0, 0)
z.I = point(1, 0)}

\begin{tikzpicture}
\tkzGetNodes
\tkzInit[xmin=-4,ymin=-4,xmax=4,ymax=4]
\tkzDrawCircle[dashed,red](O,A)
\tkzPointShowCoord(A)
\tkzDrawPoint(A)
\tkzLabelPoint[above right](A){\normalsize $a+ib$}
\tkzDrawX\tkzDrawY
\tkzDrawSegment(O,A)
\tkzLabelSegment[above,anchor=south,sloped](O,A){ OA = modulus of $z_A$}
\tkzLabelAngle[anchor=west,pos=.5](I,O,A){$\theta$ = argument of $z_A$}

\end{tikzpicture}

tkz-elements AlterMundus



11. Class point 47

𝑎+𝑖𝑏

𝑥

𝑦

OA
=
m
od
ul
us

of
𝑧 𝐴

𝜃 = argument of 𝑧𝐴
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11.3. Methods of the class point

The methods listed in the following table are standard and commonly used throughout the examples at the end
of this documentation. Each of these methods returns a point object.

For more advanced operations using complex numbers and operator overloading, see section 38.2.1, which
describes the available metamethods.

Table 2: Functions and Methods of the class point.
Methods Reference

Constructors

new(r,r) [11.3.1; 11.3.6
polar(d,an) [11.3.3]
polar_deg(d,an) [11.3.4]

Methods Returning a Real Number

get() [11.3.2]

Methods Returning a Point

north(r) [10.2.4]
south(r)
east(r)
west(r)
normalize() [11.3.6]
normalize_from(pt) [11.3.6]
orthogonal(d) [11.3.7]
at() [11.3.8]
shift_orthogonal_to(pt, d) [11.3.11]
shift_collinear_to(pt, d) [11.3.12]

Methods Returning a Circle

PPP(a,b) [11.3.9]

Methods Returning a Object

symmetry(obj) [11.3.15]
rotation(an, obj) [11.3.13]
homothety(r,obj) [11.3.16]

Utilities

identity(pt) [11.3.14]
print() [11.3.15]

11.3.1. Method new(r, r)

This method creates a point in the plane using Cartesian coordinates. The shorthand constructor (r, r) is
available since version 4 and preferred for readability and consistency.

It takes two real numbers as arguments: the first represents the abscissa (real part), and the second the ordinate
(imaginary part). Internally, the point is treated as a complex number and stored in the global table z.

The resulting object is of type point, and can be used in further geometric constructions or displayed with
tkz-euclide.

Note: The default unit is the centimeter, in accordance with the conventions of tkz-euclide. All coordinates
are interpreted in an orthonormal Cartesian coordinate system.
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𝐴

𝐵
\directlua{
init_elements()
z.A = point(0, 0)
z.B = point(2, 1)}

\begin{tikzpicture}[gridded]
\tkzGetNodes
\tkzDrawPoints(A,B)
\tkzLabelPoints(A,B)

\end{tikzpicture}

11.3.2. Method get()

The get method is used to retrieve the Cartesian coordinates of a point.

Let 𝐼 be the intersection point of two lines. You can obtain its coordinates in two equivalent ways:

– using the point’s attributes directly:
x = z.I.re and y = z.I.im

– or using the get() method:
x, y = z.I:get()

This method improves code readability and makes it easier to pass coordinates to functions that expect numerical
values.

𝑥𝐼 =2.7272727272727
𝑦𝐼 =-0.54545454545455

\directlua{
init_elements()
z.A, z.B = point(0, 0), point(5, -1)
z.C, z.D = point(1, -4), point(4, 2)
L.AB = line(z.A, z.B)
L.CD = line(z.C, z.D)
z.I = intersection(L.AB, L.CD)
x, y = z.I:get()
tex.print("$x_I = $"..x)
tex.print('\\\\')
tex.print("$y_I = $"..y)}

11.3.3. Function polar(r, an)

This method creates a point in the plane using polar coordinates.

It takes two arguments:

– r —> the modulus (distance from the origin),

– an —> the argument (angle in radians).

Internally, the point is represented as a complex number: r * exp(i * an). This method is particularly useful
for constructing points on circles or for defining points in terms of angle and distance.

Note: The default unit is the centimeter, consistent with the conventions of tkz-euclide. All coordinates are
interpreted in an orthonormal Cartesian coordinate system.

z.B = polar(2, math.pi / 4)
or
z.B = point:polar(2, math.pi / 4)
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𝐴𝑂

𝐹 \directlua{
init_elements()
z.O = point(0, 0)
z.A = point(3, 0)
z.F = polar(3, math.pi / 3)}

\begin{center}
\begin{tikzpicture}[scale=.75]

\tkzGetNodes
\tkzDrawCircle(O,A)
\tkzDrawSegments[new](O,A)
\tkzDrawSegments[purple](O,F)
\tkzDrawPoints(A,O,F)
\tkzLabelPoints[below right=6pt](A,O)
\tkzLabelPoints[above](F)

\end{tikzpicture}
\end{center}

11.3.4. Method polar_deg(d,an)

Identical to the previous one, except that the angle is given in degrees.

𝐴 𝐶

𝐵
\directlua{
init_elements()
z.A = point(0, 0)
z.B = polar_deg(3, 60)
z.C = polar_deg(3, 0)}

\begin{center}
\begin{tikzpicture}[gridded]
\tkzGetNodes
\tkzDrawPolygon(A,B,C)
\tkzDrawPoints(A,B,C)
\tkzLabelPoints(A,C)
\tkzLabelPoints[above](B)
\end{tikzpicture}

\end{center}

11.3.5. Method north(d)

This method creates a new point located at a vertical distance from the given point, along the line passing
through it and directed upward (toward the north).

It is particularly useful when you want to construct a point offset by a specific distance above a reference
point—for example, to place a label or construct a geometric configuration with a known height.

The optional argument d represents the vertical distance. If omitted, a default value of 1 is used.

\directlua{
init_elements()
z.O = point(0, 0)
z.A = z.O:east()
z.Ap= z.O:east(1):north(1)
z.B = z.O:north()
z.C = z.O:west()
z.D = z.O:south()}

\begin{center}
\begin{tikzpicture}

\tkzGetNodes
\tkzDrawPolygon(A,B,C,D)
\tkzDrawPoints(A,B,C,D,O,A')

\end{tikzpicture}
\end{center}
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11.3.6. Method normalize()

This method returns a new point located on the segment from the origin to the current point, at a distance of
1 from the origin. It is typically used to extract the direction of a vector and normalize its length to one.

You can also use this method to construct a point at a fixed distance from another point along a given direction.
For example:

z.U = (z.C - z.B):normalize() + z.B

Here, the vector ⃗⃗⃗⃗⃗⃗⃗𝐵𝑈 has length 1, and 𝑈 lies on the segment [𝐵𝐶] in the direction from 𝐵 to 𝐶.

There are two equivalent ways to achieve the same result:

z.U = z.C:normalize_from(z.B)
z.U = L.BC:normalize()

The second approach requires prior creation of the line object L.BC.

𝐴

𝐵

𝐶

𝑈

𝑁

\directlua{
init_elements()
z.A = point(0, 0)
z.B = point(4, 3)
z.C = point(1, 5)
L.AB = line(z.A, z.B)
L.BC = line(z.B, z.C)
z.N = z.B:normalize()
z.U = z.C:normalize_from(z.B)}

\begin{tikzpicture}
\tkzGetNodes
\tkzDrawLines(A,B B,C)
\tkzDrawPoints(A,B,C,U,N)
\tkzLabelPoints(A,B,C,U,N)
\tkzDrawSegment(B,C)

\end{tikzpicture}

11.3.7. Method orthogonal(d)

Let 𝑂 be the origin of the plane, and let 𝐴 be a point distinct from 𝑂. This method constructs a new point 𝐵
such that the vectors ⃗⃗⃗⃗⃗⃗⃗𝑂𝐵 and ⃗⃗⃗⃗⃗⃗⃗𝑂𝐴 are orthogonal:

⃗⃗⃗⃗⃗⃗⃗𝑂𝐵⟂ ⃗⃗⃗⃗⃗⃗⃗𝑂𝐴

By default, the point 𝐵 is chosen so that OB= OA. If the optional argument d is provided, then the point 𝐵 is
constructed so that OB=𝑑.

This method is useful for constructing perpendicular vectors or generating points on circles orthogonal to given
directions.

𝑂

𝐴𝐵

𝐶
\directlua{
init_elements()
z.A = point(3, 1)
z.B = z.A:orthogonal(1)
z.O = point(0, 0)
z.C = z.A:orthogonal()}

\begin{center}
\begin{tikzpicture}[gridded]

\tkzGetNodes
\tkzDrawSegments(O,A O,C)
\tkzDrawPoints(O,A,B,C)
\tkzLabelPoints[below right](O,A,B,C)

\end{tikzpicture}
\end{center}
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11.3.8. Method at(pt)

This method complements the orthogonal method. Instead of constructing a point 𝐵 such that ⃗⃗⃗⃗⃗⃗⃗𝑂𝐵⟂ ⃗⃗⃗⃗⃗⃗⃗𝑂𝐴 (with
𝑂 as the origin), it constructs a point 𝐵 such that:

⃗⃗⃗⃗⃗⃗⃗𝐴𝐵⟂ ⃗⃗⃗⃗⃗⃗⃗𝑂𝐴

In this case, the reference direction remains ⃗⃗⃗⃗⃗⃗⃗𝑂𝐴, but the orthogonal vector is constructed from point 𝐴, not the
origin. The result is a point 𝐵 lying on a line orthogonal to (𝑂𝐴) and passing through 𝐴.

This method is useful when working with local orthogonal directions, such as when constructing altitudes in a
triangle or defining perpendicular vectors anchored at a given point.

𝑂

𝐴

𝐶

𝐵

𝐷

\directlua{
init_elements()
z.O = point(0, 0)
z.A = point(3, 2)
z.B = z.A:orthogonal(1)
z.C = z.A + z.B
z.D =(z.C - z.A):orthogonal(2):at(z.C)}
\begin{center}
\begin{tikzpicture}[gridded]
\tkzGetNodes
\tkzLabelPoints[below right](O,A,C)
\tkzLabelPoints[above](B,D)
\tkzDrawSegments(O,A A,B A,C C,D O,B)
\tkzDrawPoints(O,A,B,C,D)
\end{tikzpicture}

\end{center}

11.3.9. Method PPP(a,b)

This method is presented in the document Geometry Euclidean [AlterMundus]

𝐴 𝐵
𝑀

𝑁

\directlua{
init_elements()
z.A = point(0, 0)
z.B = point(6, 0)
z.M = point(1, 1)
z.N = point(2, 5)
L.AB = line(z.A, z.B)
PA.center,
PA.through, n = L.AB:LPP(z.M, z.N)
tkz.nodes_from_paths(PA.center,

PA.through, "O", "T")
}

\begin{tikzpicture}[scale = .4]
\tkzGetNodes
\tkzDrawLines(A,B M,N)
\tkzDrawCircles(O1,T1 O2,T2)
\tkzDrawPoints(A,B,M,N)
\tkzLabelPoints(A,B,M,N)

\end{tikzpicture}

11.3.10. Method rotation(obj)

— First example
This method performs a rotation of one or more points around the current point, which serves as the center of
rotation.

Arguments
The arguments are:
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– the angle of rotation, expressed in radians;

– a point or a list of points to rotate.

Return value
The result is a point (or a list of points) obtained by rotating each given point around the center by the specified
angle.
Example usage
In the following example, a list of points is rotated about a given center.

𝑏

𝑏′

𝑜

𝑎

𝑎′

\directlua{
init_elements()
z.a = point(0, -1)
z.b = point(4, 0)
z.o = point(6, -2)
z.ap,
z.bp = z.o:rotation(math.pi / 2, z.a, z.b)}

\begin{center}
\begin{tikzpicture}[scale = .5]
\tkzGetNodes
\tkzDrawLines(o,a o,a' o,b o,b')
\tkzDrawPoints(a,a',b,b',o)
\tkzLabelPoints(b,b',o)
\tkzLabelPoints[below left](a,a')
\tkzDrawArc(o,a)(a')
\tkzDrawArc(o,b)(b')

\end{tikzpicture}
\end{center}

11.3.11. Method shift_orthogonal_to(pt, dist)

Syntax: z.P = z.A:shift_orthogonal_to(z.B, 2)

Return value This method returns the point obtained by shifting the current point A in the direction orthogonal
to the line (AB), at a signed distance dist. A positive distance corresponds to a rotation of the vector ⃗⃗⃗⃗⃗⃗⃗𝐴𝐵 by
+90∘ around the point A, while a negative distance corresponds to −90∘.

z.Q = z.B:shift_orthogonal_to(z.A, 2)

A positive distance corresponds to a rotation of the vector ⃗⃗⃗⃗⃗⃗⃗𝐵𝐴 by +90∘, around the point B.
\directlua{
z.A = point(3, 2)
z.a = point(3, 3)
z.B = point(7, 3)
z.b = point(7, 4)
C.A = circle(z.A, z.a)
C.B = circle(z.B, z.b)
z.TA = z.A:shift_orthogonal_to(z.B, C.A.radius)
z.TB = z.B:shift_orthogonal_to(z.A, -C.A.radius)
}
\begin{tikzpicture}[gridded]
\tkzGetNodes
\tkzDrawCircles(A,a B,b)
\tkzDrawLines(A,B TA,TB)
\tkzDrawPoints(A,B,TA,TB)
\end{tikzpicture}

11.3.12. Method shift_collinear_to(pt, dist)

This method returns the point obtained by shifting the current point A in the same direction that line (AB),
at a signed distance dist.
Syntax: z.P = z.A:shift_collinear_to(z.B, 2)
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11.3.13. Method rotation(an, obj)

Purpose:
This method rotates a geometric object by a given angle around a specified point.
In this example, the triangle is rotated by an angle of 𝜋/3 around the point 𝑂, which serves as the center of
rotation.
Syntax: new_obj = z.I:rotation(an, obj)

Arguments:
The arguments are:

– an —> the angle of rotation, in radians;

– obj —> the geometric object to be rotated (e.g., a triangle).

Returns: The method returns a new object of the same type, rotated accordingly.

𝐴 𝐵

𝐶
𝐴′

𝐵′𝐶′

𝑂

\directlua{
init_elements()
z.O = point(-1, -1)
z.A = point(2, 0)
z.B = point(5, 0)
L.AB = line(z.A, z.B)
T.ABC = L.AB:equilateral()
S.fig = L.AB:square()
_,_,z.E,z.F = S.fig:get()
S.new = z.O:rotation(math.pi / 3, S.fig)
_,_,z.Ep,z.Fp = S.new:get()
z.C = T.ABC.pc
T.ApBpCp = z.O:rotation(math.pi / 3, T.ABC)
z.Ap,z.Bp,
z.Cp = T.ApBpCp:get()}

\begin{center}
\begin{tikzpicture}[scale = .6]
\tkzGetNodes
\tkzDrawPolygons(A,B,C A',B',C' A,B,E,F)
\tkzDrawPolygons(A',B',E',F')
\tkzDrawPoints(A,B,C,A',B',C',O)
\tkzLabelPoints(A,B,C,A',B',C',O)
\begin{scope}
\tkzDrawArc[delta=0,->,dashed,red](O,A)(A')
\tkzDrawSegments[dashed,red](O,A O,A')
\end{scope}

\end{tikzpicture}
\end{center}

11.3.14. identity(pt)

Syntax: z.A:identity(z.B)

Purpose: Check whether two points are identical within the numerical precision defined by tkz.epsilon.
Parameters: The point to be compared with self.

Return value: True if the two points are numerically identical, false otherwise.

true
1e-10

\directlua{
z.A = point(0, 0)
z.B = point(0.0000000001, 0)
tex.print(tostring(z.A:identity(z.B)))
tex.print('\\\\')
tex.print(tkz.epsilon)}
%% true if tkz.epsilon > 1e-10
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Remark:
This method compares two points by computing the Euclidean distance between them and checking if it is smaller
than the global tolerance tkz.epsilon. It is useful to test equality of points in floating-point computations.

11.3.15. Method symmetry(obj)

Description: This method performs a central symmetry (point reflection) of a geometric object with respect
to the given point.

Arguments
The argument obj can be a point, a line, a triangle, a circle, or any other supported geometric object. Each
element of the object is reflected through the center point, producing a new object of the same type.

Example usage
The following example shows how to apply central symmetry to an object (e.g., a triangle) using a reference
point as the center.

𝑎

𝑎′

𝑏

𝑏′

𝑜

\directlua{
init_elements()
z.a = point(0, -1)
z.b = point(2, 0)
L.ab = line(z.a, z.b)
C.ab = circle(z.a, z.b)
z.o = point(1, 1)
z.ap, z.bp = z.o:symmetry(C.ab):get()}

\begin{center}
\begin{tikzpicture}
\tkzGetNodes
\tkzDrawCircles(a,b a',b')
\tkzDrawLines(a,a' b,b')
\tkzDrawLines[red](a,b a',b')
\tkzDrawPoints(a,a',b,b',o)
\tkzLabelPoints(a,a',b,b',o)
\end{tikzpicture}

\end{center}

11.3.16. Method homothety(k, obj)

Purpose: This method performs a homothety (dilation or contraction) of a geometric object with respect to
the current point, which serves as the center of the transformation.

Arguments:

– k — the homothety ratio (a real number),

– obj — the object to be transformed, which can be:
1. a single point,
2. a list of points,
3. or a geometric object (line, triangle, circle, etc.).

A positive ratio k produces a scaling centered at the point, while a negative ratio also reflects the object through
the center.
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𝐴

𝐵

𝐶

𝐸

\directlua{
init_elements()
z.A = point(0, 0)
z.B = point(1, 2)
z.E = point(-3, 2)
z.C, z.D = z.E:homothety(2, z.A, z.B)}

\begin{center}
\begin{tikzpicture}[scale = .5]
\tkzGetNodes
\tkzDrawPoints(A,B,C,E,D)
\tkzLabelPoints(A,B,C,E)
\tkzDrawCircles(A,B C,D)
\tkzDrawLines(E,C E,D)

\end{tikzpicture}
\end{center}

This method converts the point’s coordinates to a formatted string that can be displayed directly in the text.

The number of decimal places is controlled by the global variable tkz_dc, which is set to 2 by default in the
init_elements() function. You can override it by assigning a new value before calling print():

tkz_dc = 0

This is particularly useful when displaying coordinates, sums, products, or intermediate results in mathematical
expressions.

Example usage:

\directlua{
init_elements()
z.A = point(1, 2)
z.B = point(1, -1)
z.a = z.A + z.B
z.m = z.A * z.B
tkz_dc = 0}
The respective affixes of points $A$ and $B$ being
\tkzUseLua{z.A:print()} and \tkzUseLua{z.B:print()},
their sum is \tkzUseLua{z.a:print()} and
their product \tkzUseLua{z.m:print()}.

The respective affixes of points 𝐴 and 𝐵 being 1+2.00i and 1-i, their sum is 2+i and their product 3+i.
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12. Class line

The variable L holds a table used to store line objects. It is optional, and users are free to choose their own
variable name (e.g., Lines). However, for consistency and readability, it is recommended to use L. The function
init_elements() reinitializes this table automatically.

12.1. Creating a line

To define a line passing through two known points, use the following constructor:

L.AB = line(z.A, z.B) (short form, recommended)
L.AB = line:new(z.A, z.B) (explicit form)

This creates a line object L.AB representing:

– the infinite line passing through points z.A and z.B, and

– the segment [𝐴𝐵], which is used to compute attributes such as the midpoint or direction.

Internally, this object stores the two defining points and derives several geometric properties from them.

12.2. Attributes of a line

Let’s consider L.AB = line(z.A, z.B)
A line object provides access to the following attributes:

Table 3: Line attributes.
Attribute Meaning Reference

type Always "line"
pa First point (e.g., z.A)
pb Second point (e.g., z.B)
mid Midpoint of segment [𝐴𝐵]
slope Angle with respect to the horizontal axis [12.2.1]
length Euclidean distance 𝐴𝐵 12.2.1]
vec Vector 𝐵−𝐴 [22]
north_pa Auxiliary point north of pa [12.2.1]
north_pb Auxiliary point north of pb –
south_pa Auxiliary point south of pa –
south_pb Auxiliary point south of pb –
east Auxiliary point east of the segment –
west Auxiliary point west of the segment –

12.2.1. Example: attributes of class line

𝑎

𝑏

north_pa

south_pb

mid

west

east

ab
= 5

slo
pe

of(
ab)

= 0.6
4

\directlua{
init_elements()
z.a = point(1, 1)
z.b = point(5, 4)
L.ab = line(z.a, z.b)
z.m = L.ab.mid
z.w = L.ab.west
z.e = L.ab.east
z.r = L.ab.north_pa
z.s = L.ab.south_pb
sl = L.ab.slope
len = L.ab.length}
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12.2.2. Note on line object attributes

To recover the original defining points of a line object L.name, use either of the following:

– via the method get(n), as in z.A, z.B = L.name:get() See [12.7.1,

– or directly via its attributes L.name.pa and L.name.pb.
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12.3. Methods of the class line

Here’s the list of methods for the line object. The results can be real numbers, points, lines, circles or triangles.
The triangles obtained are similar to the triangles defined below.

Table 4: Methods of the class line.(part 1)
Methods Reference

Constructor
new(pt, pt) Notea; [12.1; 12.3.1]

Methods Returning a Real Number

distance(pt) [12.4.1]

Methods Returning a Boolean
on_line(pt) [12.5.1]
on_segment(pt) [12.5.2]
is_parallel(L) [12.5.3]
is_orthogonal(L) [12.5.4]
is_equidistant(pt) [12.5.5]

Methods Returning a String

position(pt) [12.6.1]
position_segment(pt) [12.6.2
where_on_line(pt) [12.6.3]

Methods Returning a Point

get(n) [12.7.1]
random() [12.7.14]
gold_ratio() [12.7.10; 4.4]
normalize() [12.7.11]
normalize_inv() [12.7.11]
barycenter(r,r) [12.7.3]
point(r) [12.7.4]
midpoint() [12.7.5]
harmonic_int(pt) [12.7.6]
harmonic_ext(pt) [12.7.7]
harmonic_both(r) [12.7.8]
harmonic(mode, pt) [12.7.9]
report(d,pt) [12.7.2]
collinear_at(pt,k) [ex. 12.7.12]

Methods Returning a Line

ll_from(pt) [12.8.1]
ortho_from(pt) [12.8.3]
mediator() Noteb ; [12.8.5]
swap_line() [12.8.7 ; 27.5.2]
orthogonal_at() 12.7.13

a line(pt, pt) (short form, recommended)
b You may use as a synonym.
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Table 5: Methods of the class line.(part 2)
Methods Reference

Methods Returning a Triangle

equilateral(<'swap'>) Notea; [12.9.1; 11.3.13]
isosceles(d,<'swap'>) [12.9.2]
two_angles(an,an) Note b [12.9.5]
school(<'swap'>) [12.9.3]
half(<'swap'>) [12.9.4]
s_s(r,r<,'swap'>) [12.9.6]
sa_(r,an<,'swap'>) [12.9.7]
_as(r,an<,'swap'>) [12.9.8]
a_s(r,an<,'swap'>) [12.9.10]
s_a(r,an<,'swap'>) [12.9.9]

Methods Returning a Sacred Triangle

gold(<'swap'>) [12.10.1]
golden(<'swap'>) or sublime [12.10.2]
golden_gnomon(<'swap'>) [12.10.3]
pythagoras(<'swap'>) or egyptian [12.10.4]

Methods Returning a Circle

circle()
apollonius(r) [12.11.1]
LPP or c_l_pp(pt, pt) [12.11.2]
LLP or c_ll_p(L, pt) [12.11.3]
LLL(L, L) [12.11.4]

Methods Returning a Square

square() Note c; [11.3.13]

Methods Returning a Object

reflection(obj) [12.13.5]
translation(obj) [12.13.4]
projection(obj) [12.13.1]
projection_ll(L, pts) [12.13.2]
affinity_ll(L, k, pts) [12.13.3]
Methods Returning a Path

path(n) [12.13.6]

a By default, triangles are oriented positively (counter-clockwise). Use "swap" for clockwise orientation.
b The given side is between the two angles
c _,_,z.C,z.D = S.AB:get()

12.3.1. Method new(pt,pt)

It is preferable to use syntax such as L.xx and it’s also preferable to use the short form line(pt, pt).

𝐴

𝐵

\directlua{
init_elements()
z.A = point(0, 0)
z.B = point(4, 3)
L.AB = line(z.A, z.B)}

\begin{center}
\begin{tikzpicture}

\tkzGetNodes
\tkzDrawLine(A,B)
\tkzDrawPoints(A,B)
\tkzLabelPoints(A,B)

\end{tikzpicture}
\end{center}
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12.4. Returns a real number

Only one method in this category

12.4.1. Method distance(pt)

This method gives the distance from a point to a straight line.

𝐴

𝐵

𝐶

𝐻

𝐶𝐻= 3.4

𝐴𝐵= 5.0

\directlua{
init_elements()
z.A = point(0, 0)
z.B = point(4, 3)
z.C = point(1, 5)
L.AB = line(z.A, z.B)
d = L.AB:distance(z.C)
l = L.AB.length
z.H = L.AB:projection(z.C)}

\begin{center}
\begin{tikzpicture}
\tkzGetNodes
\tkzDrawLines(A,B C,H)
\tkzDrawPoints(A,B,C,H)
\tkzLabelPoints(A,B,C,H)
\tkzLabelSegment[above right=2em,draw](C,H){%

$CH = \tkzUseLua{d}$}
\tkzLabelSegment[below right=1em,draw](A,B){%

$AB = \tkzUseLua{l}$}
\end{tikzpicture}
\end{center}

12.5. Returns a boolean

12.5.1. Method on_line(pt)

This method is a boolean wrapper of position(pt).
It returns true if the point lies on the line and false otherwise.
The method can also be called using L:on_line(pt).
Note: This method is kept for backward compatibility.
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𝐴

𝐵

X: 1.5

Y: 0

\directlua{
init_elements()
local function calc_distance(L, p)
if L:on_line(p) then

return point.abs(p - L.pa) / L.length
else

return 0
end

end
z.A = point(0, 0)
z.B = point(2, 4)
z.X = point(3, 6)
z.Y = point(2, 0)
L.AB = line(z.A, z.B)
dx = calc_distance(L.AB, z.X)
dy = calc_distance(L.AB, z.Y)}

\begin{center}
\begin{tikzpicture}
\tkzGetNodes
\tkzDrawLine(A,B)
\tkzDrawPoints(A,B,X,Y)
\tkzLabelPoints(A,B)
\tkzLabelPoint(X){X: \tkzUseLua{dx}}
\tkzLabelPoint(Y){Y: \tkzUseLua{dy}}
\end{tikzpicture}

\end{center}

12.5.2. Method on_segment(pt)

Variant of the previous method; indicates whether a point is on or off a segment.
Boolean wrapper of position_segment(pt).
Returns: true if position_segment(pt) returns "ON", and false otherwise.
Note: Kept for backward compatibility.
Returns:

– true if the point lies on the segment [𝑝𝑎,𝑝𝑏],

– false otherwise.
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𝐴

𝐵

X: OUT

Y: IN

\directlua{
init_elements()
local function inseg(L, p)
if L:on_segment(p) then

return "IN"
else

return "OUT"
end

end
z.A = point(0, 0)
z.B = point(2, 4)
z.X = point(-1,-2)
z.Y = point(1, 2)
L.AB = line(z.A, z.B)
dx = inseg(L.AB, z.X)
dy = inseg(L.AB, z.Y)}

\begin{center}
\begin{tikzpicture}
\tkzGetNodes
\tkzDrawLine(A,B)
\tkzDrawPoints(A,B,X,Y)
\tkzLabelPoints(A,B)
\tkzLabelPoint(X){X: \tkzUseLua{dx}}
\tkzLabelPoint(Y){Y: \tkzUseLua{dy}}
\end{tikzpicture}

\end{center}

12.5.3. Method is_parallel(L)

𝐴

𝐵𝐶

𝐷

(𝐶𝐷
) 𝑝𝑎

𝑟𝑎𝑙𝑙
𝑒𝑙 (𝐴

𝐵)

\directlua{
init_elements()
z.A = point(0, 0)
z.B = point(4, 2)
L.AB = line(z.A, z.B)
z.C = point(1, 2)
z.D = point(5, 4)
L.CD = line(z.C, z.D)
if L.AB:is_parallel(L.CD)
then tkztxt = "parallel"
else tkztxt = "no parallel"
end}
\begin{center}
\begin{tikzpicture}

\tkzGetNodes
\tkzDrawLines(A,B C,D)
\tkzDrawPoints(A,B,C,D)
\tkzLabelPoints(A,B,C,D)
\tkzLabelSegment[sloped,pos=.3](C,D){%
$(CD)\ \tkzUseLua{tkztxt}\ (AB)$}

\end{tikzpicture}
\end{center}
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12.5.4. Method is_orthogonal(L)

𝐴

𝐵 𝐶(𝐵𝐶) 𝑜𝑟𝑡ℎ𝑜𝑔𝑜𝑛𝑎𝑙 (𝐴𝐵)

\directlua{
init_elements()
z.A = point(0, 0)
z.B = point(0, 4)
L.AB = line(z.A, z.B)
z.C = point(5, 4)
L.BC = line(z.B, z.C)
if L.AB:is_orthogonal(L.BC) then

tkztxt = "orthogonal"
else

tkztxt = "no orthogonal"
end}
\begin{center}
\begin{tikzpicture}

\tkzGetNodes
\tkzDrawLines(A,B B,C A,C)
\tkzDrawPoints(A,B,C)
\tkzLabelPoints(A,B,C)
\tkzLabelSegment[sloped,pos=.3](B,C){%
$(BC)\ \tkzUseLua{tkztxt}\ (AB)$}

\end{tikzpicture}
\end{center}

12.5.5. Method is_equidistant(pt)

Is a point equidistant from the two points that define the line?

𝐴

𝐵 𝐶

𝐵
𝑒𝑞𝑢

𝑖𝑑𝑖
𝑠𝑡𝑎
𝑛𝑡
𝑜𝑓
𝐴
𝑎𝑛
𝑑 𝐶

\directlua{
init_elements()
z.A = point(0, 0)
z.B = point(0, 4)
z.C = point(4, 4)
L.AC = line(z.A, z.C)
if L.AC:is_equidistant(z.B) then
tkztxt = "equidistant"

else
tkztxt = "no equidistant"

end}
\begin{center}

\begin{tikzpicture}
\tkzGetNodes
\tkzDrawLines(A,B B,C A,C)
\tkzDrawPoints(A,B,C)
\tkzLabelPoints(A,B,C)
\tkzLabelSegment[sloped,pos=.3](A,C){%

$B \ \tkzUseLua{tkztxt}\ of A\ and\ C$}
\end{tikzpicture}

\end{center}

12.6. Returns a string

12.6.1. Method position(obj[,EPS])

This method classifies the relative position between the current line and another object. The returned value is a
symbolic string whose meaning depends on the type of obj. All tests are performed with a numerical tolerance.

Arguments:

– obj: a point, line, or circle;

– EPS (optional): numerical tolerance. If omitted, tkz.epsilon is used.
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Returns:

– If obj is a point: returns "ON" if the point lies on the line (within tolerance), otherwise "OUT".

– If obj is a line: returns the result of line_line_position_(self,obj,EPS).

– If obj is a circle: returns the result of line_circle_position_(self,obj,EPS).

Note: The method is a dispatcher based on getmetatable(obj) and uses tkz.epsilon by default.

12.6.2. Method position_segment(pt)

This method determines the position of a point relative to the segment [𝑝𝑎,𝑝𝑏] defined by the line object.
Arguments: pt: a point.
Returns:

– "ON" if the point lies on the segment (within tolerance),

– "OUT" otherwise.

Note: The method uses the numerical tolerance tkz.epsilon.

12.6.3. Method where_on_line(pt)

This method determines the oriented position of a point pt along a line, considered as oriented from its first
defining point pa to its second one pb.

The method assumes that the line is oriented from pa to pb. It first checks whether the point lies on the line
(within a tolerance). If this is not the case, the method returns nil.

Arguments.

– pt: a point.

Returns.

– "BEFORE" if pt lies on the line before pa;

– "BETWEEN" if pt lies on the segment [𝑝𝑎,𝑝𝑏] (i.e. between pa and pb);

– "AFTER" if pt lies on the line after pb;

– nil if pt does not lie on the line.

Notes.

– Reversing the order of the defining points pa and pb reverses the meaning of “BEFORE” and “AFTER”.

– The method uses a numerical tolerance tkz.epsilon.

12.7. Returns a point

12.7.1. Method get()

This method retrieves the two points that define the given line. It is useful, for example, when constructing a
line through a specific point and parallel to another: you need two points to define the direction.

– L.AB:get() returns the two points pa and pb.

– L.AB:get(1) returns the first point pa.

– L.AB:get(2) returns the second point pb.
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This method is available for most geometric objects that are defined by two or more points (e.g., lines, triangles,
circles). It allows for easy reuse and composition of geometric constructions.

𝐴

𝐵𝐶

𝐷
\directlua{

init_elements()
z.A = point(1, 1)
z.B = point(2, 2)
L.AB = line(z.A, z.B)
z.C = L.AB.north_pa
z.D = L.AB:ll_from(z.C):get(2)}

\begin{tikzpicture}
\tkzGetNodes
\tkzDrawLines(A,B C,D)
\tkzDrawPoints(A,B,C,D)
\tkzLabelPoints(A,B,C,D)

\end{tikzpicture}

12.7.2. Method report(r,<pt>)

Purpose: This method constructs and returns a point located at a given distance 𝑟 from a reference point
along the direction of the line.
It generalizes the idea of “reporting a length” on a line segment. Depending on whether a reference point is
specified, the method either measures from the first endpoint of the line or from a user-defined origin.
Syntax:

L:report(r) → returns the point at distance 𝑟 from L.pa along L.pb
L:report(r, pt) → returns the point at distance 𝑟 from pt parallel to L

Arguments:

r (number) — the signed distance to report along the line. If 𝑟 > 0, the point lies in the direction from pa to
pb; if 𝑟 < 0, it lies in the opposite direction.

pt (optional point) — an optional reference point from which to start measuring the distance.

Special cases:

– If the line has zero length (i.e., both endpoints coincide), an error is raised.

– Negative distances produce points on the opposite extension of the line.

– The method works consistently with open or oriented lines (not just finite segments).

Alias: The synonym point_at_distance is provided for readability, especially when the geometrical intent
is to “locate a point at a given distance along a direction”.
Returned value: A new point object corresponding to the computed location.

𝐴

𝐵

𝑀

𝑁

𝑂

𝑃

\directlua{
init_elements()
z.A = point(0, 0)
z.B = point(4, 3)
L.AB = line(z.A, z.B)
z.M = point(0, 2)
z.N = L.AB:report(2.5, z.M)
z.O = L.AB:report(2.5)
z.P = L.AB:report(-L.AB.length/3,z.M)}

\begin{center}
\begin{tikzpicture}
\tkzGetNodes
\tkzDrawSegments(A,B P,N)
\tkzDrawPoints(A,B,M,N,O,P)
\tkzLabelPoints(A,B,M,N,O,P)
\end{tikzpicture}

\end{center}
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12.7.3. Method barycenter(ka, kb)

This method returns the barycenter of the two points that define the line, weighted by the coefficients ka and
kb.

Geometrically, the barycenter lies on the line segment [𝐴𝐵] (or its extension) and divides it internally or
externally, depending on the sign and ratio of the coefficients.

𝐴

𝐵

𝐺

\directlua{
init_elements()
z.A = point(0, -1)
z.B = point(4, 2)
L.AB = line(z.A, z.B)
z.G = L.AB:barycenter(1, 2)}
\begin{center}
\begin{tikzpicture}

\tkzGetNodes
\tkzDrawLine(A,B)
\tkzDrawPoints(A,B,G)
\tkzLabelPoints(A,B,G)

\end{tikzpicture}
\end{center}

12.7.4. Method point(r)

This method is very useful: it allows you to place a point on the line, based on a real parameter r.

– If r = 0, the result is the point pa.

– If r = 1, the result is the point pb.

– If r = 0.5, the result is the midpoint of the segment [𝐴𝐵].

– Any value of r is allowed: a negative value places the point before pa, a value greater than 1 places it
beyond pb.

This method is implemented for all objects that are defined by at least two points, except for quadrilaterals.

𝐴

𝐵

𝐼

𝐽 \directlua{
init_elements()
z.A = point(-1, -1)
z.B = point(1, 1)
L.AB = line(z.A, z.B)
z.I = L.AB: point(0.75)
z.J = L.AB: point(1.2)}

12.7.5. Method midpoint()

This method has been replaced by tkz.midpoint [See 29.2].
You can obtain the midpoint of a segment using an attribute of the line object.

z.M = L.AB.mid

However, when the line object has not been created and its creation is unnecessary, the standalone function
tkz.midpoint(z.A, z.B) remains convenient and efficient.

12.7.6. Method harmonic_int(pt)

Given a point on the line but located outside the segment [𝐴𝐵], this method returns a point on the segment
that maintains a harmonic ratio.

Let 𝐴𝐵 be a line, and let 𝐷 be a point such that 𝐷 ∈ (𝐴𝐵) but 𝐷 ∉ [𝐴𝐵]. The method returns a point 𝐶 ∈ [𝐴𝐵]
such that:
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𝐴𝐶
𝐵𝐶

= 𝐴𝐷
𝐵𝐷

This construction is particularly useful in projective geometry and when working with harmonic divisions.

\directlua{
init_elements()
z.A = point(0, 0)
z.B = point(6, 0)
z.D = point(8, 0)
L.AB = line(z.A, z.B)
z.C = L.AB:harmonic_int(z.D)}
\begin{center}
\begin{tikzpicture}
\tkzGetNodes
\tkzDrawLine(A,D)
\tkzDrawPoints(A,B,C,D)
\tkzLabelPoints(A,B,C,D)
\end{tikzpicture}

\end{center}

𝐴 𝐵𝐶 𝐷

12.7.7. Method harmonic_ext(pt)

This method returns a point located outside the segment [𝐴𝐵] that satisfies a harmonic relation with a given
point on the segment.

Let 𝐴𝐵 be a line segment, and let 𝐶 be a point on [𝐴𝐵] (but not its midpoint). The method returns a point 𝐷
lying on the line (𝐴𝐵) but outside the segment [𝐴𝐵], such that:

𝐴𝐶
𝐵𝐶

= 𝐴𝐷
𝐵𝐷

This is the inverse of the operation performed by the method harmonic_int(pt).

12.7.8. Method harmonic_both(k)

This method returns two points on the line defined by 𝐴𝐵:

– one point 𝐶 lying inside the segment [𝐴𝐵],

– one point 𝐷 lying outside the segment [𝐴𝐵],

such that the following harmonic ratio holds:

𝐴𝐶
𝐵𝐶

= 𝐴𝐷
𝐵𝐷

=𝑘

The parameter k represents the desired ratio between the distances. This method is useful when you want to
construct both the internal and external harmonic conjugates of a given segment.

The method returns the two corresponding points in the order: internal, external.
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\directlua{
init_elements()
z.A = point(0, 0)
z.B = point(6, 0)
L.AB = line(z.A, z.B)
z.C, z.D = L.AB:harmonic_both(5)}

\begin{center}
\begin{tikzpicture}

\tkzGetNodes
\tkzDrawLine(A,D)
\tkzDrawPoints(A,B,C,D)
\tkzLabelPoints(A,B,C,D)

\end{tikzpicture}
\end{center}

𝐴 𝐵𝐶 𝐷

12.7.9. Method harmonic(mode, arg)

This method provides a unified interface for harmonic division.

– mode = "internal" returns the internal harmonic point.

– mode = "external" returns the external harmonic point.

– mode = "both" returns both harmonic points.

The argument arg is:

– a point when mode is "internal" or "external",

– a ratio when mode is "both".

Example

H1 = L.AB:harmonic("internal", z.P)
H2 = L.AB:harmonic("external", z.P)
Hi, He = L.AB:harmonic("both", 2)

12.7.10. Methode gold_ratio

This method returns a point 𝐶 on the segment [𝐴𝐵] that divides it according to the golden ratio 𝜑:

𝐴𝐶
𝐶𝐵

=𝜑 = 1+√5
2

≈ 1.618

This construction is useful in design, geometry, and aesthetics where harmonic proportions are desired.

AC/BC = 1.6180339887499 𝜑 = 1.6180339887499

𝐴 𝐵𝐶
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\directlua{
init_elements()
z.A = point(0, 0)
z.B = point(6, 0)
L.AB = line(z.A, z.B)
z.C = L.AB:gold_ratio()
AC = tkz.length(z.A, z.C)
BC = tkz.length(z.B, z.C)}

AC/BC = \tkzUseLua{AC / BC}

$\varphi = \tkzUseLua{(math.sqrt(5)+1)/2}$

\begin{center}
\begin{tikzpicture}

\tkzGetNodes
\tkzDrawLine(A,B)
\tkzDrawPoints(A,B,C)
\tkzLabelPoints(A,B,C)

\end{tikzpicture}
\end{center}

12.7.11. Method normalize() and normalize_inv()

𝑎𝑐 = 1 and 𝑐 ∈ [𝑎𝑏]
𝑏𝑑 = 1 and 𝑑 ∈ [𝑎𝑏]

𝑎

𝑏

𝑐

𝑑

\directlua{
init_elements()
z.a = point(1, 1)
z.b = point(5, 4)
L.ab = line(z.a, z.b)
z.c = L.ab:normalize()
z.d = L.ab:normalize_inv()

}
\begin{center}

\begin{tikzpicture}[gridded]
\tkzGetNodes
\tkzDrawSegments(a,b)
\tkzDrawCircle(a,c)
\tkzDrawPoints(a,b,c,d)
\tkzLabelPoints(a,b,c,d)
\end{tikzpicture}

\end{center}

12.7.12. Method collinear_at(pt,<r>)

This method returns a point located on a line parallel to (𝐴𝐵) and passing through a given point. The resulting
point is placed at a distance proportional to the length of 𝐴𝐵, in the same direction.

If the second argument ⟨r⟩ is omitted, it defaults to 1. In that case, the method produces a segment of the same
length and direction as [𝐴𝐵].

In addition to the scale-factor form, this method also accepts an option table {length = ℓ}, allowing the
distance 𝐶𝐷 to be specified absolutely, independently of 𝐴𝐵.

Example interpretations:

– If L.AB:collinear_at(z.C) produces point 𝐸, then 𝐶𝐸 =𝐴𝐵 and (𝐴𝐵) ∥ (𝐶𝐸).

– If L.AB:collinear_at(z.C, 0.5) produces point 𝐷, then 𝐶𝐷 = 0.5 ⋅𝐴𝐵 and (𝐴𝐵) ∥ (𝐶𝐷).

tkz-elements AlterMundus



12. Class line 71

– If L.AB:collinear_at(z.C, {length = 2}) produces point 𝐹, then 𝐶𝐹 = 2 (in the current unit) and
(𝐴𝐵) ∥ (𝐶𝐹). It is also possible to use a negative value.

This is particularly useful for replicating a vector or projecting a direction onto another position in the plane.

𝐴 𝐵

𝐶 𝐷 𝐸𝐹
\directlua{

init_elements()
z.A = point(0, 0)
z.B = point(4, 0)
z.C = point(1, 3)
L.AB = line(z.A, z.B)
z.D = L.AB:collinear_at(z.C, .5)
z.E = L.AB:collinear_at(z.C)
z.F = L.AB:collinear_at(z.C, {length = -3})}

\begin{center}
\begin{tikzpicture}
\tkzGetNodes
\tkzDrawSegments(A,B C,E C,F)
\tkzDrawPoints(A,B,C,D,E,F)
\tkzLabelPoints(A,B,C,D,E,F)
\end{tikzpicture}
\end{center}

12.7.13. Method orthogonal_at(pt,<r>)

This method returns a point located on a line perpendicular to the line (𝐴𝐵), passing through a given point.
The resulting point is placed at a distance proportional to the length of 𝐴𝐵, in a direction orthogonal to it. By
default, if the second argument is omitted, the factor is 1.

In addition to the scale factor form, this method also accepts an option table {length = ℓ}, allowing the
distance 𝐶𝐷 to be specified absolutely, independently of 𝐴𝐵.

Example interpretations:

– If L.AB:orthogonal_at(z.C) gives point 𝐸, then 𝐶𝐸 =𝐴𝐵 and (𝐴𝐵) ⟂ (𝐶𝐸).

– If L.AB:orthogonal_at(z.C, 0.5) gives point 𝐷, then 𝐶𝐷 = 0.5 ⋅𝐴𝐵 and (𝐴𝐵) ⟂ (𝐶𝐷).

– If L.AB:orthogonal_at(z.C, {length = 2}) gives point 𝐹, then 𝐶𝐹 = 2 (in the current unit) and
(𝐴𝐵) ⟂ (𝐶𝐹). It is also possible to use a negative value.

This method is useful for constructing perpendicular vectors or building geometric figures such as rectangles or
perpendicular bisectors.

𝐴 𝐵

𝐶

𝐷

𝐸

𝐹

\directlua{
init_elements()
z.A = point(0, 0)
z.B = point(2, 0)
z.C = point(1, 1)
L.AB = line(z.A, z.B)
z.D = L.AB:orthogonal_at(z.C, .5)
z.E = L.AB:orthogonal_at(z.C)
z.F = L.AB:orthogonal_at(z.C, {length = -3})}

\begin{center}
\begin{tikzpicture}
\tkzGetNodes
\tkzDrawSegments(A,B C,E C,F)
\tkzDrawPoints(A,B,C,D,E,F)
\tkzLabelPoints(A,B,C,D,E,F)

\end{tikzpicture}
\end{center}
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12.7.14. Method random()

The method returns a point belonging to the segment.

Syntax: z.M = L.AB:random()

12.8. Returns a line

12.8.1. Method ll_from(pt)

Alias: parallel_from
Purpose: This method constructs a new object of type line, parallel to the original line and passing through
the given point.

Unlike the collinear_at method, which simply returns a point translated along the same direction, ll_from
returns a full line object. This allows further operations such as intersections, projections, or constructions
involving new points along that line.

Use this method when you need a new line object rather than a point..
The choice between ll_from and collinear_at depends on the context and on whether you need to work with
the resulting direction as a geometric object.

𝐴

𝐵𝐶

𝐷 𝐸

\directlua{
init_elements()
z.A = point(1, 1)
z.B = point(2, 2)
L.AB = line(z.A, z.B)
z.C = L.AB.north_pa
z.D = L.AB.south_pa
L.CD = line(z.C, z.D)
_, z.E = L.CD:ll_from(z.B):get()}

12.8.2. Comparison between collinear_at and ll_from methods

Aspect collinear_at(pt, r) ll_from(pt)

Return type point line
Purpose Translated point Parallel line
Input Point, scalar (optional) Point
Default scalar r = 1 N/A
Use case Vector displacement Parallel construction

12.8.3. Method ortho_from(pt)

Alias: orthogonal_from
Purpose: This method constructs a new object of type line, perpendicular to the original line and passing
through the given point.

Unlike the orthogonal_at method, which returns a point located at a given distance in the perpendicular
direction, ortho_from returns a full line object. This makes it suitable for further geometric constructions
such as intersections, projections, or drawing perpendiculars.

Use this method when a perpendicular line is needed as a geometric object.
Choose between orthogonal_at and ortho_from depending on whether you need a point or a line.

tkz-elements AlterMundus



12. Class line 73

𝐴

𝐵

𝐶

𝐷

\directlua{
init_elements()
z.A = point(1, 1)
z.B = point(3, 2)
L.AB = line(z.A, z.B)
z.C = point(1, 3)
L.CD = L.AB:ortho_from(z.C)
z.D = L.CD.pb}

12.8.4. Comparison between orthogonal_at and ortho_from

Aspect orthogonal_at(pt, r) ortho_from(pt)

Return type point line
Purpose Perpendicular displacement Perpendicular line
Input Point, scalar (optional) Point
Default scalar r = 1 N/A
Use case Construct a perpendicular point Build a perpendicular line

12.8.5. Method mediator()

In mathematical literature (e.g., MathWorld), the mediator of a segment—also known as the perpendicular
bisector—is defined as the line that passes through the midpoint of a segment and is perpendicular to it. It is
sometimes called a mediating plane in 3D geometry.
The termmediator has historical roots, and was notably used by J. Neuberg (see Altshiller-Court, 1979, p. 298).
In this package, I have chosen to adopt the French term médiatrice, translated here as mediator.

The method returns a new line object that is perpendicular to the original and passes through its midpoint.

Alias: You may also call this method using the alternative names perpendicular_bisector() or bisector().

𝐴 𝐵

𝑥

𝑦

𝑀

\directlua{
init_elements()
z.A = point(0,0)
z.B = point(5,0)
L.AB = line(z.A, z.B)
L.med = L.AB:mediator()
z.M = L.AB.mid
z.x, z.y = L.med:get()}

\begin{center}
\begin{tikzpicture}

\tkzGetNodes
\tkzDrawLine(A,B)
\tkzDrawSegments(x,y)
\tkzDrawPoints(A,B,M)
\tkzLabelPoints(A,B)
\tkzLabelPoints[below left](x,y,M)
\tkzMarkSegments(A,M M,B)

\end{tikzpicture}
\end{center}

12.8.6. Method collinear_at_distance(d)

Description: This method creates a new line parallel to the current one, at a signed distance d. The sign of
d follows the usual convention: d > 0 shifts the line to the left of the oriented segment ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗𝑝𝑎𝑝𝑏, and d < 0 to the
right.

Syntax: L' = L:collinear_at_distance(d)
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Arguments: d — signed offset distance (real number, same unit as coordinates).

Return value:
A new line object parallel to L at distance d.

Example usage:

𝐴

𝐵

𝐷

𝐸

\directlua{
z.A = point(0, 0)
z.B = point(5, 2)
L.AB = line (z.A, z.B)
L.n = line(collinear_at_distance_(z.A, z.B, -1))
z.D, z.E = L.n:get()}

\begin{tikzpicture}[gridded,scale=.5]
\tkzGetNodes
\tkzDrawLines[blue](A,B)
\tkzDrawLines[red](D,E)
\tkzDrawPoints[red,size=4](A,B,D,E)
\tkzLabelPoints[red](A,B,D,E)
\end{tikzpicture}

12.8.7. Method swap_line

Purpose: This method is not intended for frequent use, but it can be useful in specific contexts. When a line is
created, it is defined by two points—pa and pb—which determine the direction of the line. In certain geometric
constructions (notably involving conics), the orientation of the line can affect the outcome of computations or
methods.

The swap_line() method returns a new line object with the order of the defining points reversed, effectively
reversing the direction of the line.

This is particularly relevant when direction-sensitive operations (e.g., projections, asymptotes, or oriented in-
tersection tests) are involved.

𝐴

𝐵

\directlua{
init_elements()
z.A = point(0, 0)
z.B = point(2, -1)
L.dir = line(z.A, z.B)
L.dir = L.dir:swap_line()
z.a = L.dir.pa
z.b = L.dir.pb}

\begin{tikzpicture}
\tkzGetNodes
\tkzDrawSegments[cyan,thick,->](a,b)
\tkzLabelPoints[below](A,B)

\end{tikzpicture}

12.9. Returns a triangle

12.9.1. Method equilateral(<'swap'>)

This method constructs an equilateral triangle using the segment defined by the line as its base.

The triangle has three equal sides, and its base is the segment from pa to pb. The construction respects the
orientation of the base.

– By default, the triangle is built in the direct (counterclockwise) orientation: the triangle has vertices 𝐴,
𝐵, 𝐶 where 𝐴𝐵 is the base.

– If the optional argument "swap" is provided, the orientation is reversed: the triangle becomes 𝐴, 𝐵, 𝐶 in
indirect (clockwise) order.
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This method returns a triangle object.

𝐴 𝐵

𝐶

\directlua{
init_elements()
z.A = point(0,0)
z.B = point(4,0)
L.AB = line(z.A, z.B)
T.ABC = L.AB:equilateral()
z.C = T.ABC.pc}

12.9.2. Method isosceles(d, <'swap'>)

This method constructs an isosceles triangle having the segment defined by the line as its base.

The argument d specifies the length of the two equal sides extending from each endpoint of the base. The
triangle is constructed in the default orientation determined by the direction from pa to pb.

If the optional argument ⟨”swap”⟩ is provided, the triangle is constructed in the opposite orientation (i.e., the
apex is placed on the other side of the base).

The method returns a triangle object.

𝑐

𝑎 𝑏

44

\directlua{
init_elements()
z.a = point(1, 2)
z.b = point(3, 1)
L.ab = line(z.a, z.b)
T.abc = L.ab:isosceles(4)
z.c = T.abc.pc}

12.9.3. Method school(<'swap'>)

The school triangle is a right triangle with angles measuring 30∘, 60∘, and 90∘—commonly used in elementary
geometric constructions.

By default, the 30∘ angle is at the first point (pa) of the line, and the 60∘ angle is at the second point (pb).
Using the optional argument ⟨”swap”⟩ reverses this placement, exchanging the two base angles.

To reverse the triangle’s orientation (i.e., construct it in the indirect direction), simply reverse the order of the
points defining the line, for example: L.AB = line(z.B, z.A).

𝐴 𝐵

𝐶

𝜋/2

𝜋/6 𝜋/3

\directlua{
init_elements()
z.A = point(0, 0)
z.B = point(4, 0)
L.AB = line(z.A, z.B)
T.ABC = L.AB:school()
z.C = T.ABC.pc}

12.9.4. Method half(<'swap'>)

This method constructs a right triangle in which the two sides adjacent to the right angle are in the ratio 1 ∶ 2.

By default, the right angle is located at the first point of the line (pa). If the optional argument ⟨”swap”⟩ is
provided, the right angle is placed at the second point (pb).

tkz-elements AlterMundus



12. Class line 76

This type of triangle is useful for constructing simple geometric configurations or illustrating special triangle
cases.

𝐴 𝐵

𝐶

𝜋/2

𝐴𝐵= 2𝐴𝐶

\directlua{
init_elements()
z.A = point(0, 0)
z.B = point(4, 0)
L.AB = line(z.A, z.B)
T.ABC = L.AB:half('swap')
z.C = T.ABC.pc}

12.9.5. Method two_angles(an, an)

This method constructs a triangle by specifying two angles located at each endpoint of the given segment. The
triangle is completed by determining the third vertex so that the sum of the interior angles is 180∘.

The two given angles are applied at the endpoints pa and pb of the line. The resulting triangle is determined
by extending the sides from these angles until they meet.

This method corresponds to the classical ASA construction (Angle–Side–Angle) and may also be called using
the alternative names asa or a_a.

𝐴 𝐵

𝐶

2𝜋/5

𝜋/6

\directlua{
init_elements()
z.A = point(0, 0)
z.B = point(4, 0)
L.AB = line(z.A, z.B)
T.ABC = L.AB:two_angles(math.pi / 6,2 * math.pi / 5)
z.C = T.ABC.pc}

12.9.6. Method s_s(d, d)

This method constructs a triangle given the lengths of its three sides: the base and the two sides adjacent to it.

The base of the triangle is defined by the line object (e.g., L.AB), which determines the segment between pa
and pb. The two arguments d represent the lengths of the remaining sides.

This construction corresponds to the classical SSS configuration (Side–Side–Side), and the method may also
be called using the aliases s_s or sss.

𝐴 𝐵

𝐶

\directlua{
init_elements()
z.A = point(0, 0)
z.B = point(5, 0)
L.AB = line(z.A, z.B)
T.ABC = L.AB:s_s(3, 4)
z.C = T.ABC.pc}

12.9.7. Method sa_(d, an, <'swap'>)

This method constructs a triangle from a given base (the line), a side length, and the angle between that side
and the base.

It corresponds to the classical SAS configuration (Side–Angle–Side). The side of length d is placed at the first
point pa of the base, and the angle an (in degrees) is formed between this side and the base.

If the optional argument ⟨”swap”⟩ is provided, the side and angle are instead applied from the second point pb,
effectively mirroring the triangle across the base.

tkz-elements AlterMundus



12. Class line 77

𝐴 𝐵

𝐷

12.9.8. Method _as(d, an,<'swap'>)

This method is the counterpart of sa_. It constructs a triangle using a given base (the line), a side of length d,
and the angle an adjacent to that side, but this time measured from the second point pb of the base.

The construction still corresponds to the classical SAS configuration (Side–Angle–Side), but applied in reverse
order from the base’s endpoint.

If the optional argument ⟨”swap”⟩ is provided, the triangle is built in indirect (clockwise) orientation, which may
be useful for constructing mirrored configurations.

12.9.9. Method s_a(d, an, <'swap'>)

This method constructs a triangle from a given base (the line), a side of length d, and an angle an opposite that
side.

The construction corresponds to the classical SSA configuration (Side–Side–Angle), which is known to be
ambiguous: depending on the values of the side and angle, the result may be:

– no triangle (invalid configuration),

– exactly one triangle,

– or two possible triangles.

When two triangles are possible, the method returns the one with the larger angle at the base by default. If the
optional argument ⟨”swap”⟩ is provided, the method returns the second solution.

𝐴 𝐵

𝐸

𝐷
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12.9.10. Method a_s(d,an,<'swap'>)

12.9.11. Summary of triangle construction methods from a line

Method Type Parameters Angle configuration

equilateral() Equilateral none 60∘ – 60∘ – 60∘
isosceles(d) Isosceles one side Two equal angles
school() Right none 30∘ – 60∘ – 90∘
half() Right none One angle with tan𝜃 = 1/2
two_angles(a,b) ASA two angles Two angles at endpoints
s_s(d,d) SSS two sides Three known sides
sa_(d,an) SAS side + angle at pa Included angle at first point
_as(d,an) SAS side + angle at pb Included angle at second point
s_a(d,an) SSA side + opposite angle Possible ambiguity

12.10. Returns a sacred triangle

The names attributed to these triangles are traditional or symbolic and may differ from those used in standard
mathematical literature.

Name (Method) Definition / Properties

gold() Right triangle with 𝑐/𝑏 =√𝜑; half of the golden rectangle

golden() Isosceles triangle with 𝑏/𝑐 = 𝜑, angles 𝛼 = 𝛽 = 2𝜋
5
;

Also called: sublime triangle, Euclid’s triangle

golden_gnomon() Isosceles triangle with 𝑏/𝑐 = 1/𝜑, angles 𝛼 = 𝛽 = 𝜋
5

pythagoras() Right triangle with sides 𝑎 = 5𝑘, 𝑏 = 4𝑘, 𝑐 = 3𝑘;
Also known as the Egyptian or Isis triangle

12.10.1. Method gold()

This method constructs a right triangle in which the ratio of the lengths of the two sides adjacent to the right
angle is equal to 𝜑, the golden ratio:

𝑐
𝑏
=√𝜑

This triangle corresponds to half of a golden rectangle.

𝐴 𝐵

𝐶

\directlua{
init_elements()
z.A = point(0, 0)
z.B = point(5, 0)
L.AB = line(z.A, z.B)
T.ABC = L.AB:gold()
z.C = T.ABC.pc}

12.10.2. Method golden()

A golden triangle—also known as a sublime triangle—is an isosceles triangle in which the equal sides are in
the golden ratio 𝜑 to the base.

In this construction, the ratio of a duplicated side 𝑏 to the base 𝑐 satisfies:

𝑏
𝑐
= 𝜑
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This triangle appears in many classical constructions, notably in pentagonal geometry and Euclidean aesthetics.

𝐴 𝐵

𝐶

𝑏

𝑐

2𝜋/5

\directlua{
init_elements()
z.A = point(0, 0)
z.B = point(2, 0)
L.AB = line(z.A, z.B)
T.ABC = L.AB:golden()
z.C = T.ABC.pc}

12.10.3. Method golden_gnomon()

The golden_gnomon, also called the divine triangle, is an obtuse isosceles triangle in which the ratio of the side
length to the base is equal to the inverse of the golden ratio:

𝑏
𝑐
= 1

𝜑
= 𝜑−1

This triangle has two angles measuring 36∘ and one angle of 108∘. It can be constructed geometrically from a
regular pentagon and frequently appears in golden ratio-based constructions.

𝐴 𝐵

𝐶

𝑏

𝑐
𝜋/5

\directlua{
init_elements()
z.A = point(0, 0)
z.B = point(5, 0)
L.AB = line(z.A, z.B)
T.ABC = L.AB:divine()
z.C = T.ABC.pc}

12.10.4. Method pythagoras()

This method constructs the classical right triangle whose side lengths are in the ratio 3 ∶ 4 ∶ 5.

Also known as the Egyptian triangle or Isis triangle, it is a Pythagorean triangle with integer side proportions:

𝑎 = 3𝑘, 𝑏 = 4𝑘, 𝑐 = 5𝑘

It is one of the most fundamental triangles in Euclidean geometry and appears in many historical constructions.

𝐴 𝐵

𝐶

𝜋/2

\directlua{
init_elements()
z.A = point(0, 0)
z.B = point(5, 0)
L.AB = line(z.A, z.B)
T.ABC = L.AB:egyptian()
z.C = T.ABC.pc}

12.11. Returns a circle

12.11.1. Method apollonius(d)

Given two points 𝐴 and 𝐵, this method constructs the Apollonius circle: the locus of points 𝑀 such that the
ratio of distances to 𝐴 and 𝐵 is constant:
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𝑀𝐴
𝑀𝐵

=𝑑

The resulting object is a circle that does not pass through 𝐴 or 𝐵 (unless 𝑑 = 1, in which case it becomes the
perpendicular bisector of segment [𝐴𝐵]). The method returns a circle object.

𝐶𝐴/𝐶𝐵 = 2
𝑃𝐴/𝑃𝐵 = 2
𝐷𝐴/𝐷𝐵 = 2

𝐴 𝐵 𝑂 𝐶𝐷

𝑃

\directlua{
init_elements()
z.A = point(0, 0)
z.B = point(6, 0)
L.AB = line(z.A, z.B)
C.apo = L.AB:apollonius(2)
z.O,z.C = C.apo:get()
z.D = C.apo:antipode(z.C)
z.P = C.apo:point(0.30)}

\begin{center}
\begin{tikzpicture}[scale=.8]
\tkzGetNodes
\tkzFillCircle[blue!20,opacity=.2](O,C)
\tkzDrawCircle[blue!50!black](O,C)
\tkzDrawPoints(A,B,O,C,D,P)
\tkzDrawSegments[orange](P,A P,B P,D B,D P,C)
\tkzDrawSegments[red](A,C)
\tkzDrawPoints(A,B)
\tkzLabelCircle[draw,fill=green!10,%

text width=3cm,text centered,left=24pt](O,D)(60)%
{$CA/CB=2$\\$PA/PB=2$\\$DA/DB=2$}
\tkzLabelPoints[below right](A,B,O,C,D)
\tkzLabelPoints[above](P)

\tkzMarkRightAngle[opacity=.3,fill=lightgray](D,P,C)
\tkzMarkAngles[mark=||](A,P,D D,P,B)

\end{tikzpicture}
\end{center}
Remark: \tkzUseLua{tkz.length(z.P,z.A)/tkz.length(z.P,z.B)} = 2.0

12.11.2. Method LPP(p, p)

This method is presented in the document Euclidean Geometry presented in altermundus.fr.
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𝐴 𝐵
𝑀

𝑁

\directlua{
init_elements()
z.A = point(0, 0)
z.B = point(6, 0)
z.M = point(1, 1)
z.N = point(2, 5)
L.AB = line(z.A, z.B)
PA.center,
PA.through, n = L.AB:LPP(z.M, z.N)
tkz.nodes_from_paths(PA.center,

PA.through, "O", "T")
}

\begin{tikzpicture}[scale = .4]
\tkzGetNodes
\tkzDrawLines(A,B M,N)
\tkzDrawCircles(O1,T1 O2,T2)
\tkzDrawPoints(A,B,M,N)
\tkzLabelPoints(A,B,M,N)

\end{tikzpicture}

12.11.3. Method LLP(L, p)

This method is presented in the document Euclidean Geometry presented in altermundus.fr.

𝐴

𝐵𝐶

𝐷

𝑃

\directlua{
init_elements()
z.A = point(-1, 2)
z.B = point(2, -3)
z.C = point(-1, -3)
z.D = point(2, 1)
L.AB = line(z.A, z.B)
L.CD = line(z.C, z.D)
z.S = intersection(L.AB, L.CD)
L.SI = tkz.bisector(z.S, z.A, z.D)
z.P = L.SI:point(-1)
local centers,
throughs, n = L.AB:LLP(L.CD, z.P)
tkz.nodes_from_paths(centers, throughs)

}
\begin{center}
\begin{tikzpicture}

\tkzGetNodes
\tkzDrawLines[red](A,B C,D)
\tkzDrawCircles[blue](w1,t1 w2,t2)
\tkzDrawPoints(A,B,C,D,P,w1,t1,w2,t2)
\tkzLabelPoints(A,B,C,D,P)

\end{tikzpicture}
\end{center}

12.11.4. Method LLL(L1,L2[,which])

This method is presented in the document Euclidean Geometry presented in altermundus.fr.
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𝐴 𝐵

𝐶

\directlua{
init_elements()
z.A = point(0, 0)
z.B = point(6, 0)
z.C = point(4.5, 6)
T.ABC = triangle(z.A, z.B, z.C)
L.AB = line(z.A, z.B)
L.AC = line(z.A, z.C)
L.med = L.AB:mediator ()
z.M = L.AB.mid
z.x, z.y = get_points(L.med)
z.H = L.AB:projection(z.C)
L.ortho = L.AB:orthogonal_from(z.C)
PA.center,
PA.through = L.AC:LLL(L.med, L.ortho)
z.w = PA.center:get(1)
z.t = PA.through:get(1)
PA.center,
PA.through = L.AB:LLL(L.AC, T.ABC.bc)
z.o = PA.center:get(1)
z.h = PA.through:get(1)}

\begin{center}
\begin{tikzpicture}

\tkzGetNodes
\tkzDrawLines(A,B A,C B,C)
\tkzDrawCircles(w,t o,h)
\tkzDrawPoints(A,B,C)
\tkzLabelPoints(A,B,C)
\end{tikzpicture}

\end{center}

12.12. The result is a square

12.12.1. Method square(<'swap'>)

This method constructs a square using the segment defined by the line as one of its sides. The resulting square
shares the segment [𝐴𝐵] as a base and constructs the remaining two vertices so that all angles are right angles
and all sides are equal in length.

By default, the square is built in the direct orientation from 𝐴 to 𝐵. If the optional argument ⟨”swap”⟩ is
provided, the square is built on the opposite side, reversing its orientation.

The result is a square object, and its vertices can be accessed using the get() method.

𝐴

𝐵

𝐶

𝐷

\directlua{
init_elements()
z.A = point(0, 0)
z.B = point(-3, 2 )
L.AB = line(z.A, z.B)
S.AB = L.AB:square("swap")
_,_,z.C,z.D = S.AB:get()}

\begin{tikzpicture}
\tkzGetNodes
\tkzDrawPolygon(A,...,D)
\tkzDrawPoints(A,...,D)
\tkzLabelPoints(A,...,D)

\end{tikzpicture}
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12.13. Transformations: the result is an object

This section presents geometric transformations whose result is a new geometric object. The nature of the result
depends on both the transformation and the type of argument passed.

12.13.1. Method projection(obj)

This method projects one or more points orthogonally onto the line.

The argument obj may be:

– a single point object (e.g., z.P),

– a list (Lua table) of point objects.

The result is either:

– a single projected point, if the input is a point,

– a table of projected points, if the input is a list.

This method is useful for constructing foots of perpendiculars or projecting configurations onto a supporting
line.

𝑎

𝑏

𝑐

𝑑

𝑐′
𝑑′

\directlua{
init_elements()
z.a = point(0, 0)
z.b = point(4, 1)
z.c = point(2, 5)
z.d = point(5, 2)
L.ab = line(z.a, z.b)
z.cp, z.dp = L.ab:projection(z.c, z.d)}
\begin{center}
\begin{tikzpicture}[scale = .8]

\tkzGetNodes
\tkzDrawLines(a,b c,c' d,d')
\tkzDrawPoints(a,...,d,c',d')
\tkzLabelPoints(a,...,d,c',d')

\end{tikzpicture}
\end{center}

12.13.2. Method projection_ll(L, obj)

This method performs a projection of a point or a group of points onto a line that is parallel to another reference
line.

Unlike the standard orthogonal projection (using the line itself), this method projects onto a line that is parallel
to the reference line L, and not necessarily coincident with it.

The method accepts the following arguments:

– L — a line object that defines the direction of the projection,

– obj — a point or a list of points to be projected.

The projection is computed along lines parallel to L. The result is:

– a projected point, if the input is a single point,

– a list of projected points, if the input is a table.
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𝑎

𝑏

𝑐

𝑑

𝑒

𝑓

𝑚 𝑛

\directlua{
init_elements()
z.a = point(0, 0)
z.b = point(4, 1)
z.c = point(-1, 3)
z.d = point(-2, -1)
z.m = point(1, 2)
z.n = point(3, 2)
L.ab = line(z.a, z.b)
L.cd = line(z.c, z.d)
z.e,
z.f = L.ab:projection_ll(L.cd, z.m, z.n)}

\begin{center}
\begin{tikzpicture}

\tkzGetNodes
\tkzDrawLines(a,b c,d e,m f,n)
\tkzDrawPoints(a,...,f,m,n)
\tkzLabelPoints(a,...,f,m,n)

\end{tikzpicture}
\end{center}

12.13.3. Method affinity(L, k, obj)

The introduction of parallel projection onto a given direction allows the definition of a new geometric transfor-
mation: affinity.

This method applies an affine transformation to a point or a group of points, using the line L to define the
direction of the transformation. The points are projected onto the line associated with the current object along
lines parallel to L.

Accepted arguments:

– L — a line object defining the direction of the affinity,

– obj — a point or a list of points to transform.

This transformation preserves parallelism and the ratio of distances along lines parallel to the axis of affinity.

𝑎

𝑏

𝑐

𝑑

𝑒

𝑓

𝑔

ℎ

𝑚 𝑛

\directlua{
init_elements()
z.a = point(0, 0)
z.b = point(4, 1)
z.c = point(-1, 3)
z.d = point(-2, -1)
z.m = point(1,2)
z.n = point(3,2)
L.ab = line(z.a, z.b)
L.cd = line(z.c, z.d)
z.e,
z.f = L.ab:projection_ll(L.cd, z.m, z.n)
z.g,
z.h = L.ab: affinity(L.cd,2, z.m, z.n)

}
\begin{center}
\begin{tikzpicture}

\tkzGetNodes
\tkzDrawLines(a,b c,d e,m f,n)
\tkzDrawPoints(a,...,h,m,n)
\tkzLabelPoints(a,...,h,m,n)

\end{tikzpicture}
\end{center}
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12.13.4. Method translation(obj)

This method performs a translation based on the vector defined by the segment from pa to pb, the two endpoints
of the line.

The argument obj can be:

– a point,

– a line,

– a triangle,

– a circle.

The method applies the same translation vector to all components of the object. Other object types may be
supported in future versions.

𝐴

𝐵𝐶 𝐷

𝐸 𝐹
\directlua{
init_elements()
z.A = point(0, 0)
z.B = point(1, 2)
z.C = point(-3, 2)
z.D = point(0, 2)
L.AB = line(z.A, z.B)
z.E, z.F = L.AB:translation(z.C, z.D)}
\begin{center}

\begin{tikzpicture}
\tkzGetNodes
\tkzDrawPoints(A,...,F)
\tkzLabelPoints(A,...,F)
\tkzDrawSegments[->,red,> =latex](C,E D,F A,B)
\end{tikzpicture}

\end{center}

12.13.5. Method reflection(obj)

This method performs an axial (orthogonal) reflection with respect to the line. It corresponds to a symmetry
with respect to the axis defined by the segment from pa to pb.

The argument obj can be:

– a point,

– a line,

– a triangle,

– a circle.

The method returns the reflected object across the line. Support for additional geometric objects may be added
in future versions.
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\directlua{
init_elements()
z.A = point(0, 0)
z.B = point(4, 1)
z.E = point(0, 2)
z.F = point(3, 3)
z.G = point(4, 2)
L.AB = line(z.A, z.B)
T.EFG = triangle(z.E, z.F, z.G)
T.new = L.AB:reflection(T.EFG)
z.Ep, z.Fp, z.Gp = T.new:get()}

\begin{center}
\begin{tikzpicture}

\tkzGetNodes
\tkzDrawLine(A,B)
\tkzDrawPolygon(E,F,G)
\tkzDrawPolygon[new](E',F',G')
\tkzDrawSegment[red,dashed](E,E')

\end{tikzpicture}
\end{center}

12.13.6. Method path(n): Creating a path

A line object can be sampled into a sequence of two points using the method path(n). 𝑛 indicates the number
of segments between the two ends of the segment. This is typically used to create TikZ-compatible paths or
intermediate constructions. This path exists mainly for compatibility and association with other paths.

Note:
By default, only the two endpoints are used to define the path, c’est à dire 𝑛 = 1. This is suitable for filling or
clipping regions. For smooth curves, a larger number of subdivisions is recommended.

L.AB = line(z.A, z.B)
PA.line = L.AB:path()

You can then draw the path using:

\tkzDrawCoordinates(PA.line)

or draw the points with

\tkzDrawPointsFromPath[red,size=2](PA.line)

Examples Three points and four intervals !
\directlua{
z.A = point(0, 0)
z.B = point(6, 4)
L.AB = line(z.A, z.B)
PA.AB = L.AB:path(3)
}
\begin{tikzpicture}
\tkzDrawCoordinates[blue](PA.AB)
\tkzDrawPointsFromPath[red,size=2](PA.AB)
\end{tikzpicture}

Given three points, let’s look at how, using the path method, we can draw the triangle defined by these three
points. In this case, only the two ends of each side are required:
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\directlua{
z.O = point(0, 0)
z.P = point(6, 0)
z.Q = point(2, 4)
T.OPQ = triangle(z.O, z.P, z.Q)
PA.OP = T.OPQ.ab:path(2)
PA.PQ = T.OPQ.bc:path(2)
PA.QO = T.OPQ.ca:path(2)
PA.zone = PA.OP + PA.PQ + PA.QO}
\begin{tikzpicture}
\tkzGetNodes
\tkzDrawCoordinates[cyan](PA.zone)
\tkzDrawPoints(O,P,Q)
\end{tikzpicture}

With \tkzDrawCoordinates[cyan,fill = orange!10](PA.zone), you can fill inside the path.
In the following example, if you want to trace the contour of an angular sector, you’ll need to use more points
to define the various paths. Otherwise, distortions will appear at path junctions.

\directlua{
z.A = point(0, 0)
z.B = point(1, 2)
C.AB = circle(z.A, z.B)
z.E = C.AB:point(1 / 6)
z.C = C.AB:point(0.25)
z.D = C.AB:point(0.5)
L.AB = line(z.A, z.B)
L.CA = line(z.C, z.A)
PA.arcBC = C.AB:path(z.B, z.C, 20)
PA.AB = L.AB:path(5)
PA.CA = L.CA:path(5)
PA.sector = PA.AB + PA.arcBC + PA.CA

}
\begin{tikzpicture}
\tkzGetNodes
\tkzDrawCoordinates[smooth,red,

fill = purple!20](PA.sector)
\tkzDrawPoints(A,B,C)
\tkzDrawPoints(A,B,C)
\end{tikzpicture}
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13. Class circle

The C variable is a table reserved for storing circle objects. Although its use is optional and any valid variable
name may be used (e.g., Circles), it is strongly recommended to adopt the standard name C to ensure con-
sistency and readability. If a custom variable is used, it must be initialized manually. The init_elements()
function will reset the circleC table if it has already been defined.

13.0.1. Creating a circle

A circle is defined by two points:

– the center of the circle,

– a point lying on the circle.

To create a circle, use the following syntax:

C.OA = circle(z.O, z.A)

The newly created circle object stores various geometric attributes such as its radius, diameter, and notable
points on the circumference (e.g., north, east, south, and west poles).

13.1. Attributes of a circle

A circle object stores various geometric attributes that can be accessed for further computation or drawing.
These attributes are automatically computed at creation.

Table 6: Circle attributes.
Attributes Reference

type Type of circle, always ”circle”
center Center of the circle
through Point through which the circle passes
radius [13.1.1]
north [13.1.1]
south [13.1.1]
east [13.1.1]
west [13.1.1]
opp [13.1.1]
ct [13.1.1]
perimeter [13.1.2]
area [13.1.2]

13.1.1. Example: circle attributes

Several attributes of the circle class are illustrated in the following example.

The point diametrically opposite a given point on the circle can be obtained using the method:

z.Mp = C.OA:antipode(z.M)

When a circle object is created using circle, the point diametrically opposite the defining point (the one
through which the circle passes) is automatically generated and stored in the attribute opp.

In addition, the line passing through the center and that point is also created and accessible via the attribute
ct (center-to-through). This is particularly useful when dealing with a circle returned by a function, and you
don’t know in advance which points were used to construct it.
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𝑎

𝑏

𝑐

𝑠

𝑤

ab
= 5.0

\directlua{
init_elements()
z.a = point(1, 1)
z.b = point(5, 4)
C.ab = circle(z.a, z.b)
z.s = C.ab.south
z.w = C.ab.west
r = C.ab.radius
z.c = C.ab.opp
z.r,
z.t = C.ab.ct:ortho_from(z.b):get()}

\begin{center}
\begin{tikzpicture}[scale=.5]
\tkzGetNodes
\tkzDrawPoints(a,b,c,s,w)
\tkzLabelPoints(a,b,c,s,w)
\tkzDrawCircle(a,b)
\tkzDrawSegments(a,b r,t b,c)
\tkzLabelSegment[sloped](a,b){ab = \tkzUseLua{r}}
\end{tikzpicture}

\end{center}

13.1.2. Attributes perimeter and area

\directlua{
z.A = point(1, 2)
z.B = point(4, 3)
C.AB = circle(z.A, z.B)
p = C.AB.perimeter
a = C.AB.area}

Let be two points $A$ and $B$. The circle of center $A$ passing
through $B$ has perimeter \pmpn{\tkzUseLua{p}} $cm$
and area \pmpn{\tkzUseLua{a} }$cm^2$.

Let be two points 𝐴 and 𝐵. The circle of center 𝐴 passing through 𝐵 has perimeter 19.8692 𝑐𝑚 and area
31.4159𝑐𝑚2.
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13.2. Methods of the class circle

The circle class offers a wide range of methods, which can be grouped according to the type of value they return:
numbers, booleans, strings, points, lines, or circles. These methods allow for computations such as checking
inclusion, finding tangents, computing inversions, and more.

Table 7: Circle methods.
Methods Reference

Constructor

new(O,A) Note7; [13.2.1; 13.0.1]
radius(O,r) Deprecated; See [13.2.3]
diameter(A,B) Deprecated; See [13.2.4]

Methods Returning a Real Number

power(pt) 13.3.4]

Methods Returning a String

circles_position(C1) [13.5.1]
position(obj) [13.3.5]
lines_position(L) [13.3.8]

Methods Returning a Boolean

is_tangent(L) [13.3.1]
is_secant(L) [13.3.2]
is_disjoint(L) [13.3.3]

Methods Returning a Point

get(i) [13.6.1]
antipode(pt) [13.6.2]
midarc(pt,pt) [13.6.3]
point(r) [13.6.4]
random_pt(<'inside'>) [13.6.5]
inversion(obj) [13.10.1; 13.10.1 13.10.1]
inversion_neg(obj) [13.10.2]
internal_similitude(C) [13.6.6]
external_similitude(C) [13.6.7]
similitude(mode, C) [13.6.8]
radical_center(C1<,C2>) [13.6.9]
pole(L) [13.6.10]

Methods Returning a Line

radical_axis(C) [ 13.7.6 ; 13.7.6; 13.7.6; 13.7.6; 13.7.6]
tangent_at(pt) [13.7.1]
tangent_from(pt) [13.7.2]
tangent_parallel(L) [13.7.3]
common_tangent(C) [13.7.4]
polar() [13.7.5]
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Table 8: Circle methods
Methods Returning a Circle

orthogonal_from(pt) [13.8.1]
orthogonal_through(pta,ptb) [13.8.2]
midcircle(C) [13.9.3; (ii)]
radical_circle(C1<,C2>) [13.8.3]
CPP(pt,pt) [13.8.4]
CCP(C,pt) [13.8.5]
CLP(L,pt,<'inside'>) [13.8.6]
CLL 13.8.7
CCL(C2, L) 13.9
CCC(C2, C3[, opts]) 13.9.1
CCC_gergonne(C2, C3) 13.9.2
Methods Returning a Path
path(pt,pt,nb) [13.10.3]

Table 9: Auxiliary functions for circle construction.
Functions Returning two Points

through(pt,r,<angle>) See [13.2.2]
diameter(pt,pt,<'swap'> or <angle>) See [13.2.2]

Each method can be called using the dot syntax, such as C.OA:antipode(z.P) or C.OA:radical_axis(C1).
Deprecated methods are retained for compatibility but should be avoided in new code.

13.2.1. Method new(pt, pt)

This method creates a new circle object defined by two points:

– the center of the circle,

– a point on the circumference, referred to as through.

The radius is computed as the Euclidean distance between the two points. Internally, the circle object stores both
the center and the defining point, and computes several useful attributes for further geometric constructions.

Short form:
The function circle(center, through) is equivalent to circle:new(center, through) and is recommended
for ease of use.

C.OA = circle(z.O, z.A)
-- same as:
C.OA = circle:new(z.O, z.A)

Derived attributes:
Once created, the circle object contains:

– radius — the distance from the center to the point,

– diameter — twice the radius,

– opp — the point diametrically opposite to through,

– ct — the directed segment from center to through point.

These attributes are computed automatically and accessible via dot notation (e.g., C.OA.radius, C.OA.opp).
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𝐴

𝑂

\directlua{
init_elements()
z.O = point(0, 0)
z.A = point(2, 1)
C.OA = circle(z.O, z.A)}

\begin{center}
\begin{tikzpicture}[gridded]
\tkzGetNodes
\tkzDrawCircle(O,A)
\tkzDrawPoints(A,O)
\tkzLabelPoints[right](A,O)
\end{tikzpicture}

\end{center}

13.2.2. Functions through and diameter

These two utility functions assist in defining circles based on minimal data. They do not return a circle object
themselves but instead return a pair of points: the center and a point through which the circle passes. These
can be directly passed to circle(...), as shown below.

C.OT = circle(through(z.O, 5)) -- default angle = 0
C.OT = circle(through(z.O, 5, math.pi / 3)) -- point at 60°
C.OT = circle(diameter(z.A, z.B)) -- through = B
C.OT = circle(diameter(z.A, z.B, "swap")) -- through = A

1. Function through(center, radius, <angle>])
Constructs a circle based on:

– a center point,

– a radius (positive real),

– an optional angle (in radians) specifying the position of the point on the circumference.

If the angle is omitted, the point lies on the positive 𝑥-axis from the center (i.e., angle = 0).
2. Function diameter(A, B, <'swap'> or <angle>)
Constructs a circle using two diametrically opposed points. The function returns:

– the midpoint of [𝐴𝐵] as the center,

– one of the two points as the through point.

By default, the second argument (B) is returned as the through point. If the optional third argument "swap"
is provided, the first point (A) is used instead. The optional angle (in radians) specifying the position of the
point ”through” on the circumference.

𝐴

𝐵

𝑇
\directlua{
z.A = point(0, 0)
z.B = point(2, 1)
C.T = circle(through(z.A, math.sqrt(5), math.pi / 2))
C.a = circle(diameter(z.A, z.B))
z.T = C.T.through
C.b = circle(diameter(z.A, z.T, "swap"))
z.w = C.a.center
z.t = C.a.through
z.u = C.b.center
z.v = C.b.through}

\begin{tikzpicture}[gridded]
\tkzGetNodes
\tkzDrawCircles(A,T w,t u,v)
\tkzDrawPoints(A,B,T)
\tkzLabelPoints[right](A,B,T)
\end{tikzpicture}
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13.2.3. Method radius(pt,r)

(Deprecated see above [13.2.2])
This method has been retained for backward compatibility but is no longer recommended. It has been replaced
by a more flexible and construction-oriented approach.
We define a circle with its centre and radius.

𝐴

𝑂

𝑇

\directlua{
init_elements()
z.O = point(0, 0)
z.A = point(2, 1)
C.T = circle:radius(z.A, math.sqrt(5))
% better C.T = circle(from_radius(z.A, math.sqrt(5)))
z.T = C.T.through }

\begin{center}
\begin{tikzpicture}[gridded]
\tkzGetNodes
\tkzDrawCircles(A,T)
\tkzDrawPoints(A,O,T)
\tkzLabelPoints[right](A,O,T)

\end{tikzpicture}
\end{center}

13.2.4. Method diameter(pt,pt)

(Deprecated see above [13.2.2])
This method has been retained for backward compatibility but is no longer recommended. It has been replaced
by a more flexible and construction-oriented approach.
A circle is defined by two points at the ends of one of its diameters.

𝐴

𝐵

𝑂

𝑇

\directlua{
init_elements()
z.A = point(0, 0)
z.B = point(2, 1)
C.T = circle:diameter(z.A, z.B)
% better C.T = from_diameter(z.A, z.B)
z.O = C.T.center
z.T = C.T.through}

\begin{center}
\begin{tikzpicture}[gridded]
\tkzGetNodes
\tkzDrawCircles(O,T)
\tkzDrawPoints(A,B,O,T)
\tkzLabelPoints[right](A,B,O,T)
\end{tikzpicture}
\end{center}

13.3. Returns a boolean value

13.3.1. Method is_tangent(L)

This method checks whether a given line is tangent to the circle. It returns a boolean value: true if the line is
tangent, and false otherwise.

This is useful for logical tests and conditional constructions in Lua. The method uses geometric distance and
precision tolerance to determine tangency.

Example:
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L.CD tangent to C.AB

𝐴

𝐶

𝐵

𝐷

\directlua{
z.A = point(0, 0)
z.B = point(0, 2)
C.AB = circle(z.A, z.B)
z.C = point(2, -2)
z.D = point(2, 3)
L.CD = line(z.C, z.D)
if C.AB:is_tangent(L.CD) then
tex.print("L.CD tangent to C.AB")

else
tex.print("L.CD no tangent to C.AB")

end}
\begin{tikzpicture}

\tkzGetNodes
\tkzDrawCircle(A,B)
\tkzDrawLines(C,D)
\tkzDrawPoints(A,B,C,D)
\tkzLabelPoints[below left](A,C)
\tkzLabelPoints[above right](B,D)

\end{tikzpicture}

13.3.2. Method is_secant(L)

see the example above

13.3.3. Method is_disjoint(L)

see the example above

13.3.4. Method power(pt)

The power method computes the power of a point with respect to the given circle. It is defined as:

power(𝑃) = OP2−𝑟2

where 𝑂 is the center of the circle and 𝑟 its radius.

The sign of the result allows us to determine the relative position of the point 𝑃:

– positive: the point lies outside the circle,

– zero: the point lies on the circle,

– negative: the point lies inside the circle.

Here is an example using a function to print this information:
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\directlua{
init_elements()
z.O = point(0, 0)
z.R = point(2, 0)
z.A = point(1, 1)
z.B = point(2, -1)
C.OR = circle(z.O, z.R)
function position(pt)

if C.OR:power(pt) > 0
then

return tex.print("out")
else
return tex.print("in")

end
end}

\begin{tikzpicture}
\tkzGetNodes
\tkzDrawCircle(O,R)
\tkzDrawPoints(A,O,B)
\tkzLabelPoint(A){\tkzUseLua{position(z.A)}}
\tkzLabelPoint(B){\tkzUseLua{position(z.B)}}

\end{tikzpicture}

in

out

13.3.5. Method position(obj)

This method determines the geometric relation between a circle and another object. An optional argument EPS
may be provided to adjust the numerical tolerance. By default, EPS is the global value tkz.epsilon.

Syntax:
result = C:position(obj [, EPS])

Supported object types and return values

– Point
Returns one of:
– "IN" — point strictly inside the disk,
– "ON" — point on the circumference,
– "OUT" — point outside the disk.

– Line
Returns one of:
– "DISJOINT" — no intersection,
– "TANGENT" — exactly one common point,
– "SECANT" — two intersection points.

– Circle
Returns one of:
– "DISJOINT_EXT" — exterior disjoint circles,
– "TANGENT_EXT" — exterior tangency,
– "SECANT" — two intersections,
– "TANGENT_INT" — interior tangency,
– "DISJOINT_INT" — one circle strictly inside the other,
– "CONCENTRIC" — same center, different radii,
– "COINCIDENT" — identical circles.
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Remarks

– Returned values are symbolic uppercase strings.

– Results are tolerance-aware.

– Unsupported object types raise an error.

𝑂 𝑀

𝑁

𝑃

IN on the circle
𝑂 𝑀

𝑁

𝑃

OUT on the circle

𝑂 𝑀

𝑁

𝑃
ON on the circle

𝑂 𝑀

𝑁

𝑃

IN on the disk

𝑂 𝑀

𝑁

𝑃

OUT on the disk

𝑂 𝑀

𝑁

𝑃

IN on the disk

\directlua{
init_elements()
z.O = point(0, 0)
z.A = point(1 ,2)
C.OA = circle(z.O, z.A)
z.N = point(-2, 2)
z.M = point(1, 0)
z.P = point(2, 1)

PCm = C.OA:position(z.M)
PDm = C.OA:position_disk(z.M)
PCn = C.OA:position(z.N)
PDn = C.OA:position_disk(z.N)
PCp = C.OA:position(z.P)
PDp = C.OA:position_disk(z.P)

}

\def\tkzPosPoint#1#2#3#4{%
\tkzLabelPoints(O,M,N,P)
\tkzLabelPoint[below=#4pt,
font=\scriptsize](#2){\tkzUseLua{#1} on the #3}%

}

\begin{center}
\begin{tikzpicture}
\tkzGetNodes
\tkzDrawSegments[dashed](O,M O,N O,P)
\tkzDrawCircle(O,A)
\tkzDrawPoints(O,M,N,P)

\tkzPosPoint{PCm}{M}{circle}{8}
\tkzPosPoint{PCn}{N}{circle}{8}
\tkzPosPoint{PCp}{P}{circle}{8}

\tkzPosPoint{PDm}{M}{disk}{14}
\tkzPosPoint{PDn}{N}{disk}{14}
\tkzPosPoint{PDp}{P}{disk}{14}
\end{tikzpicture}

\end{center}

13.3.6. Method in_out for circle and disk; Deprecated

The following methods in_out(), in_out_disk(), in_disk(p), in_out_disk(p), in_disk_strict(p) and
out_disk_strict(p) have been replaced by position and position_disk. See [13.3.5]
Note: They still exist, but it is preferable to use position.

13.3.7. Method line_position(L)

Purpose:
This method classifies the position of a line relative to a circle.
It returns whether the line is disjoint, tangent or secant.

Syntax: pos = C.AB:line_position(L.CD)
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Arguments:
L — a line object to be tested against the circle.

Return value:
A string describing the relative position of the line:

– "DISJOINT" — no intersection between line and circle,

– "TANGENT" — line tangent to the circle (one point of contact),

– "SECANT" — line intersecting the circle at two points.

Remarks:

– The radius is computed from the center and the defining point (self.through) to ensure numerical
stability.

– The tolerance tkz.epsilon is used to handle rounding errors near tangency.

Example usage:

DISJOINT

\directlua{
z.A = point(0, 0)
z.B = point(4, -2)
L.AB = line (z.A, z.B )
z.O = point(2, 2)
z.X = z.O + point(0,-2)
C.OX = circle(z.O, z.X)
tex.print(C.OX:line_position(L.AB))}

\begin{tikzpicture}[gridded]
\tkzGetNodes
\tkzDrawLines[blue](A,B)
\tkzDrawCircle(O,X)
\end{tikzpicture}

13.3.8. Method lines_position(L1, L2, mode)

Purpose:
This method determines the relative position of a circle with respect to two lines. It analyzes which angular
or strip sectors are touched by the circle depending on whether the lines are parallel or secant. The result is
returned as a list of integers corresponding to the sectors intersected by the circle.
Syntax: sectors = C:lines_position(L1, L2 [, mode])
Arguments:

– L1, L2 — two line objects.

– mode — an optional string:
– "parallel" — if the lines are known to be parallel;
– any other value (or omitted) — default, for secant lines.

Return value:
A Lua table (list of integers) representing the indices of the sectors touched by the circle.

For secant lines:

– sectors are numbered counterclockwise from the first line to the second: 1, 2, 3, 4;

– for example, {1} means the circle is entirely inside the first sector, and {4, 1, 2} means the circle touches
three adjacent sectors.
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For parallel lines:

– sectors are numbered as: 1 – between the lines, 2 – outside on the side of L1, 3 – outside on the side of L2;

– examples: {1} → circle entirely between the lines; {1,2} → tangent to L1; {1,2,3} → circle large enough
to cross both lines.

Remarks:

– The classification is purely geometric and does not compute intersection points.

– The tolerance tkz.epsilon is used to handle numerical approximations in tangency detection.

Example (secant lines)

2

𝐴

𝐵

𝐶

𝐷

\directlua{
z.A = point(0, 0)
z.B = point(3, -2)
L.AB = line (z.A, z.B)
z.C = point(-2, 3)
z.D = point(3, 1)
L.CD = line (z.C, z.D)
z.O = point(2, 4)
z.X = z.O + point(0, -1)
C.OX = circle(z.O, z.X)
tex.print(C.OX:lines_position(L.AB, L.CD))}

\begin{tikzpicture}
\tkzGetNodes
\tkzDrawLines[blue](A,B)
\tkzDrawLines[red](C,D)
\tkzDrawCircle(O,X)
\tkzDrawPoints[red,size=4](A,B,C,D)
\tkzLabelPoints(A,B,C,D)
\end{tikzpicture}

Example (parallel lines)

1

\directlua{
z.A = point(0,0)
z.B = point(4,0)
L.AB = line(z.A, z.B)
z.C = point(0,3)
z.D = point(4,3)
L.CD = line(z.C, z.D)
z.O = point(2,1.5)
z.T = z.O + point(0,1)
C.OT = circle(z.O, z.T)
local s = C.OT:lines_position(L.AB,

L.CD, "parallel")
tex.print(s)}

\begin{tikzpicture}
\tkzGetNodes
\tkzDrawLines[blue](A,B C,D)
\tkzDrawCircle(O,T)

\end{tikzpicture}

13.4. Returns a real number

13.4.1. Method power(pt)

The power of a point 𝐴 with respect to a circle of radius 𝑟 and center 𝑂 is a classical notion in Euclidean
geometry.

It is defined as the scalar quantity:

𝑝 =𝐴𝑃⋅𝐴𝑄=𝐴𝑀 2−𝑟2
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where:

– 𝑃 and 𝑄 are the points of intersection of the circle with a line passing through 𝐴,

– 𝑀 is the center 𝑂 of the circle (so 𝐴𝑀 2 = AO2),

– and 𝐴𝑇 is a tangent from 𝐴 to the circle, satisfying 𝐴𝑇2 =𝐴𝑀 2−𝑟2.

Geometrically:

– If 𝐴 lies outside the circle, the power is positive.

– If 𝐴 lies on the circle, the power is zero.

– If 𝐴 lies inside the circle, the power is negative.

In Lua, this is evaluated by calling:

p = C.XY:power(z.A)

This value can be used for algebraic computations or to test point inclusion via its sign.

\directlua{
init_elements()
z.O = point(5, 0)
z.A = point(0, 0)
z.R = point(7, 0)
C.OR = circle(z.O, z.R)
z.Q = C.OR:point(0.15)
L.AQ = line(z.A, z.Q)
_, z.P = intersection(C.OR,L.AQ)
L.T = C.OR:tangent_from(z.A)
z.T = L.T.pb}
\begin{tikzpicture}
\tkzGetNodes
\tkzDrawCircle(O,T)
\tkzDrawPoints(A,O,P,Q,T)
\tkzDrawSegments(A,O A,Q A,T)
\tkzLabelPoints(A,O,P,Q,T)
\tkzText(2,2){$p =\tkzUseLua{%
C.OR:power(z.A)} =AT^2=AP * AQ$}

\end{tikzpicture}

𝐴 𝑂

𝑃

𝑄
𝑇

𝑝 = 21.0 =𝐴𝑇2 =𝐴𝑃 ∗𝐴𝑄

13.5. Returns a string

13.5.1. Method circles_position

This function returns a string indicating the position of the circle in relation to another. Useful for creating a
function. Cases are:

– outside

– outside tangent

– inside tangent

– inside

– intersect
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\directlua{
init_elements()

z.A = point(0, 0)
z.a = point(3, 0)
z.B = point(2, 0)
z.b = point(3, 0)
C.Aa = circle(z.A, z.a)
C.Bb = circle(z.B, z.b)
position = C.Aa:circles_position(C.Bb)
if position == "inside tangent"
then color = "orange"
else color = "blue" end}

\begin{tikzpicture}
\tkzGetNodes
\tkzDrawCircle(A,a)
\tkzDrawCircle[color=\tkzUseLua{color}](B,b)

\end{tikzpicture}

13.6. Returns a point

13.6.1. Method get()

This method retrieves the defining points of a circle. A circle is determined by its center and one point on its
circumference.

– C:get() returns the center and a point through which the circle passes.

– C:get(1) returns the center of the circle.

– C:get(2) returns the point on the circumference.

This method is useful whenever the geometric definition of a circle needs to be reused, for instance when
constructing tangents, radical axes, or when passing circle data to other constructions. It provides a simple and
consistent way to access the fundamental points that define a circle.

13.6.2. Method antipode

This method is used to define a point that is diametrically opposed to a point on a given circle.

𝐴

𝐵

𝑂

\directlua{
init_elements()
z.A = point(0, 0)
z.O = point(2, 1)
C.OA = circle(z.O, z.A)
z.B = C.OA:antipode(z.A)}

\begin{center}
\begin{tikzpicture}[gridded]

\tkzGetNodes
\tkzDrawCircles(O,A)
\tkzDrawPoints(A,B,O)
\tkzLabelPoints[right](A,B,O)

\end{tikzpicture}
\end{center}

13.6.3. Method midarc

The classical definition, as found in MathWorld, is the following:

The mid-arc points of a triangle, as defined by Johnson (1929), are the points on the circumcircle
of the triangle that lie halfway along each of the three arcs determined by the triangle’s vertices.
These points arise in the definitions of the Fuhrmann circle and Fuhrmann triangle, and they lie on
the extensions of the perpendicular bisectors of the triangle sides drawn from the circumcenter.
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In the present context, the definition is generalized. The method returns the point on a circle that divides a
given arc into two equal arcs in terms of angular measure. In other words, it computes the midpoint (in angle)
of the arc defined by two points on the circle.

This method is applicable to any pair of points on a circle, not just those associated with triangle vertices or
circumcircles.

𝐴

𝐵

𝑂

𝑀

\directlua{
init_elements()
z.A = point(0, 0)
z.O = point(2, 1)
C.OA = circle(z.O, z.A)
z.B = C.OA:point(0.25)
z.M = C.OA:midarc(z.A, z.B)}

\begin{center}
\begin{tikzpicture}[gridded]

\tkzGetNodes
\tkzDrawCircles(O,A)
\tkzDrawPoints(A,B,O,M)
\tkzLabelPoints[right](A,B,O,M)

\end{tikzpicture}
\end{center}

13.6.4. Method point(r)

Let 𝐶 be a circle with centre 𝑂 and passing through 𝐴 such that z.A = C.through. This method defines a
point 𝑀 on the circle from A such that the ratio of the length of �𝐴𝑀 to the circumference of the circle is equal
to 𝑟.
In the next example, 𝑟 = 1

6
corresponds to

𝜋/3
2𝜋

, so the angle 𝐴𝑂𝐸 has the measure 𝜋/3.

If 𝑟 = .5 the defined point is diametrically opposed to 𝐴, the angle 𝐴𝑂𝐷 has the measure 𝜋.

𝐴𝐵

𝐶

𝐷

𝑂

\directlua{
init_elements()
z.O = point(0, 0)
z.A = point(1, 2)
C.OA = circle(z.O, z.A)
z.B = C.OA:point(1 / 6)
z.C = C.OA:point(0.25)
z.D = C.OA:point(0.5)}
\begin{center}
\begin{tikzpicture}
\tkzGetNodes
\tkzDrawCircle(O,A)
\tkzDrawPoints(A,...,D,O)
\tkzLabelPoints(A,...,D,O)
\end{tikzpicture}
\end{center}

13.6.5. Method random(<'inside'>)

Produces a point on the circle or inside the disc with the ’inside’ option.
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𝑂

𝐴

𝑀

𝑁

\directlua{
init_elements()
z.O = point(0, 2)
z.A = point(2, 1)
C.OA = circle(z.O, z.A)
z.M = C.OA:random()
z.N = C.OA:random('inside')}

13.6.6. Method internal_similitude(C)

This method computes the internal center of similitude of two given circles.

Two circles (in general position) always admit two homothetic centers:

– the internal center of similitude, which lies between the two centers and divides the segment joining
them internally in the ratio of their radii,

– the external center of similitude, which lies outside the segment and divides it externally in the same
ratio.

These centers lie on the line joining the centers of the two circles, called the line of centers.

This method returns the internal homothetic center — the point from which the two circles appear in the same
direction and proportion, as though one were scaled into the other internally.

Note: Degenerate cases (e.g., equal centers, equal or zero radii) are handled separately.

(See also: Wikipedia — Homothetic center)

\directlua{
init_elements()
z.A = point(0, 0)
z.a = point(2, 2)
z.B = point(5 , 2)
z.b = point(6 , 1)
C.Aa = circle(z.A, z.a)
C.Bb = circle(z.B, z.b)
z.I = C.Aa:internal_similitude(C.Bb)
L.TA1, L.TA2 = C.Aa:tangent_from(z.I)
z.A1 = L.TA1.pb
z.A2 = L.TA2.pb}

\begin{center}
\begin{tikzpicture}[ scale =.6]

\tkzGetNodes
\tkzDrawCircles(A,a B,b)
\tkzDrawPoints(A,a,B,b,I,A1,A2)
\tkzDrawLines[add = 1 and 2](A1,I A2,I)

\end{tikzpicture}
\end{center}

13.6.7. Method external_similitude(C)

This method computes the external center of similitude of two given circles.

As with the internal case, two circles in general position admit two homothetic centers. The external center of
similitude lies on the line of centers, but outside the segment joining the two centers.

It divides this line externally in a ratio equal to that of the radii of the circles. This center is the unique point
from which the two circles appear as scaled images of each other in opposite orientations.
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This construction is essential in many geometric transformations (e.g., inversion, similarity, coaxal systems) and
in the theory of midcircles and Apollonius circles.

Note: As with the internal center, degenerate cases such as identical centers or zero radius are handled separately.

\directlua{
init_elements()
z.A = point (0 , 0 )
z.a = point (2 , 2)
z.B = point (3 , 2 )
z.b = point(3.5, 1 )
C.Aa = circle(z.A, z.a)
C.Bb = circle(z.B, z.b)
z.I = C.Aa:external_similitude(C.Bb)
L.TA1,L.TA2 = C.Aa:tangent_from(z.I)
z.A1 = L.TA1.pb
z.A2 = L.TA2.pb}

\begin{center}
\begin{tikzpicture}[scale = .75]
\tkzGetNodes
\tkzDrawCircles(A,a B,b)
\tkzDrawPoints(A,a,B,b,I,A1,A2)
\tkzDrawLines[add = .25 and .1](A1,I A2,I)
\end{tikzpicture}
\end{center}

13.6.8. Method similitude(C,mode)

This method unifies the two similitude-center functions.

– mode = "internal" returns the internal center of similitude.

– mode = "external" returns the external center of similitude.

Example:

S = C1:similitude(C2, "internal")
Se = C1:similitude(C2, "external")

13.6.9. Method radical_center(C1, C2)

In classical geometry, the radical center (also called the power center) of three circles is the unique point of
concurrency of their pairwise radical axes.

This fundamental result, attributed to Gaspard Monge (see Dörrie 1965, p.153), states that:

The radical axes of any three circles (no two of which have the same center) intersect in a single
point — the radical center.

(See also: MathWorld — Radical Center)

In this implementation, the method radical_center(C1, C2) also has a well-defined meaning when applied
to only two circles. The point returned by

z.P = C1:radical_center(C2)

is the intersection of the radical axis of the two circles with the line joining their centres.
This point may be regarded as an extended radical center. It is the centre of a distinguished circle orthogonal
to both given circles. This circle belongs to the coaxial pencil of circles orthogonal to C1 and C2; its intersections
with the line joining the centres coincide with the two fixed base points of this pencil.
The construction naturally extends to the case of a circle and a point. A point 𝑃 is interpreted as a circle-point,
that is, a circle of zero radius:

z.P = point(a,b), C.P = circle(z.P,z.P).
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In this setting, the radical center is the centre of the unique circle orthogonal to the given circle and passing
through the point 𝑃.

This point is useful for constructions involving inversion, coaxal systems, and special configurations such as the
Apollonius circle.
Example, with three circles, two circles and one circle and a point

𝐴

𝐵

𝐶

𝑤

𝑤1 𝑤2
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\directlua{
z.A = point(0, 0)
z.a = z.A + point (1, 0)
z.B = point (4, 1)
z.b = z.B + point (2, 0)
z.C = point (2, 6)
z.c = z.C + point (3, 0)
C.Aa = circle(z.A, z.a)
C.Bb = circle(z.B, z.b)
C.Cc = circle(z.C, z.c)
L.rAB = C.Aa:radical_axis(C.Bb)
L.rAC = C.Aa:radical_axis(C.Cc)
L.rBC = C.Bb:radical_axis(C.Cc)
z.w = C.Aa:radical_center(C.Bb, C.Cc)
z.x1, z.y1 = L.rAB:get()
z.x2, z.y2 = L.rAC:get()
z.x3, z.y3 = L.rBC:get()
z.t = C.Aa:radical_circle(C.Bb, C.Cc).through
z.w1, z.t1 = C.Aa:radical_circle(C.Bb):get()
C.B = circle(z.B, z.B)
z.w2, z.t2 = C.Aa:radical_circle(C.B):get()}
\begin{center}
\begin{tikzpicture}

\tkzGetNodes
\tkzDrawCircles[blue](A,a B,b C,c)
\tkzDrawCircles[red](w,t)
\tkzDrawCircles[orange](w1,t1)
\tkzDrawCircles[purple](w2,t2)
\tkzDrawLines[red](x1,y1 x2,y2 x3,y3)
\tkzDrawPoints(A,B,C,w,w1,w2)
\tkzLabelPoints[below right](A,B,C,w,w1,w2)

\end{tikzpicture}
\end{center}

13.6.10. Method pole(L)

Syntax:

P = circle:pole(L)

Purpose: Compute the pole of a line 𝐿 with respect to the current circle. The pole is the point whose polar is
exactly the line 𝐿.

Arguments:

– L — a line object.

Returns:

– the point 𝑃 such that the polar of 𝑃 w.r.t. the circle is 𝐿;

– or nil,"INFINITE" if the line passes through the circle’s center.

Geometric principle: Let 𝑂 be the center of the circle and 𝑅 its radius. Denote by 𝐻 the orthogonal projection
of 𝑂 onto the line 𝐿. If 𝐻 ≠𝑂, the inversion of 𝐻 in the circle, satisfying 𝑂𝐻 ⋅𝑂𝑃 =𝑅2, is the pole 𝑃 of line 𝐿.

𝑃 = Inv(𝑂,𝑅)(𝐻), with 𝐻 = proj𝐿(𝑂)

If 𝐻 =𝑂 (i.e. the line passes through the center), the pole is an ideal point on the perpendicular to 𝐿 through
𝑂.

Example:
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𝐴

𝐵

𝐶

𝐷

𝑃

13.7. Returns a line

13.7.1. Method tangent_at(pt)

This method constructs the tangent to a circle at a given point on its circumference.

The result is a straight line segment centered at the point of contact. Its two endpoints are placed symmetrically
at equal distances from the contact point, which facilitates drawing and labeling.

In the example below, the points Tx and Ty are the two endpoints of the tangent segment at the point of contact.

This method is useful for highlighting tangency in diagrams, constructing tangent directions, or defining or-
thogonal projections.

𝐴

𝐵

\directlua{
init_elements()
z.A = point(0,0)
z.B = point(1,2)
C.AB = circle(z.A, z.B)
L.T = C.AB:tangent_at(z.B)
z.Tx, z.Ty = L.T:get()}

13.7.2. Method tangent_from(pt)

This method computes the two tangents from a point external to a given circle.

Given a point 𝑃 lying outside the circle, there exist exactly two lines passing through 𝑃 and tangent to the
circle. This method returns these two tangent lines, each defined by 𝑃 and the point of contact with the circle.

The points of contact are also accessible as the endpoints of these lines. These are the unique points where the
tangents touch the circle and are orthogonal to the radius.

This construction is useful in many classical geometric configurations (radical axis, triangle incircle tangents,
etc.).
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𝐴

𝑇2
𝐶

𝐵

𝑇1 \directlua{
init_elements()
z.A = point(0,0)
z.B = point(1,2)
C.AB = circle(z.A, z.B)
z.C = point(3,-2)
L.T1,L.T2 = C.AB:tangent_from(z.C)
z.T1 = L.T1.pb
z.T2 = L.T2.pb}

13.7.3. Method tangent_parallel(line)

This method constructs the two tangents to a circle that are parallel to a given direction (provided as a line).

Each tangent is returned as a straight line segment centered at its point of contact with the circle. For conve-
nience of drawing and labeling, the two endpoints of every tangent segment are placed symmetrically at equal
distances from the contact point.

L1, L2 = C:tangent_parallel(Ldir)

𝑂

𝐴

𝐵

𝑀

𝑁

\directlua{
init_elements()
z.A = point(0, 0)
z.B = point(4, 4)
L.AB = line(z.A, z.B)
z.O = point(3, -2)
z.T = point(3, 0)
C.OT = circle(z.O, z.T)
L.T1, L.T2 = C.OT:tangent_parallel(L.AB)
z.x, z.y = L.T1:get()
z.u, z.v = L.T2:get()
z.M = L.T1.mid
z.N = L.T2.mid}
\begin{center}
\begin{tikzpicture}[scale=.5]
\tkzGetNodes
\tkzDrawCircle(O,T)
\tkzDrawLines(A,B x,y u,v)
\tkzDrawPoints(O,A,B,M,N)
\tkzLabelPoints(O,A,B,M,N)
\end{tikzpicture}
\end{center}

13.7.4. Method commun_tangent(C)

This method constructs a common tangent to two circles. It used to return only external tangents; the
new version supports three options for mode: "external" (default), "internal", and "both". The number of
solutions depends on the relative position of the circles and ranges from 0 to 4.

Typical cases:

– Disjoint (separate) circles: 4 tangents (2 external, 2 internal).

– Externally tangent circles (touch at one point): 3 tangents (2 external, 1 internal).

– Intersecting circles (two crossings): 2 tangents (both external).

– Internally tangent circles (one inside, touching): 1 tangent (external).
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– One circle strictly contained in the other (no contact): 0 tangents.

Notes and conventions:

– mode="external" returns the external common tangents; mode="internal" returns the internal ones.

– Degenerate cases are handled explicitly: coincident circles yield infinitely many common tangents (unde-
fined), concentric circles with distinct radii yield none.

– When radii are equal and circles are disjoint, there are still 4 tangents; the external homothety center is
at infinity, which may influence the construction method but not the result.

\directlua{
init_elements()
z.A = point(0, 0)
z.a = point(4, 0)
z.B = point(6, 0)
z.b = point(5, 0)
C.Aa = circle(z.A, z.a)
C.Bb = circle(z.B, z.b)
L.Tx, L.Ty = C.Aa:

common_tangent(C.Bb,"external")
z.x, z.y = L.Tx:get()
z.xp, z.yp = L.Ty:get()
L.Tu, L.Tv = C.Aa:

common_tangent(C.Bb,"internal")
z.u, z.v = L.Tu:get()
z.up, z.vp = L.Tv:get()}

\begin{center}
\begin{tikzpicture}[scale =.5]

\tkzGetNodes
\tkzDrawCircles(A,a B,b)
\tkzDrawLines[red](x,y x',y' u,v u',v')
\tkzDrawPoints(x,y,x',y',u,v,u',v')

\end{tikzpicture}
\end{center}

Application:

Let 𝑇 and 𝑇′ be the points of tangency of a common external tangent to two circles, chosen such that 𝑇 lies on
the first circle and 𝑇 ′ on the second, both on the same side. Consider a secant parallel to this tangent passing
through a fixed point 𝐶 (typically the center of one of the circles).

In this configuration, the segment [𝑇𝑇 ′] is seen from the other intersection point 𝐷 (of the secant with the
second circle) under an angle equal to half the angle between the two given circles.

This elegant geometric relationship is used in the construction of tangents and angle bisectors associated with
pairs of circles.
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𝐴

𝐵

𝐷𝑀

𝐶

𝑀′

𝑇

𝑇′

\directlua{
init_elements()
z.A = point(0 , 0 )
z.B = point(5 , 2 )
L.AB = line(z.A, z.B)
z.C = point(1, 2)
C.AC = circle(z.A, z.C)
C.BC = circle(z.B, z.C)
L.TTp = C.AC:common_tangent(C.BC)
z.T, z.Tp = L.TTp:get()
z.M = C.AC:point(0.45)
L.MC =line(z.M, z.C)
z.Mp = intersection(L.MC, C.BC)
L.mm = L.TTp:ll_from(z.C)
_, z.M = intersection(L.mm, C.AC)
z.Mp = intersection(L.mm, C.BC)
_, z.D = intersection(C.AC,C.BC)}

13.7.5. Method polar(pt)

In projective geometry, the notions of pole and polar see a duality between points and lines with respect to a
conic section.

In the special case of a circle, this duality becomes particularly elegant. The method polar(pt) computes the
polar line of a given point with respect to the circle.

This construction is based on inversion in the circle:

– The polar line of a point 𝑄 (not at the center) is defined as the line orthogonal to the radius through 𝑄,
passing through the inverse of 𝑄 with respect to the circle.

– Conversely, the pole of a line 𝐿 (not passing through the center) is the inverse (in the circle) of the foot
of the perpendicular from the center to the line.

This method currently only supports the case where a point is provided as argument. The result is a line —
the polar of that point.

(See also: Wikipedia — Pole and polar)
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𝑜

𝑤

𝑏′

𝑎

𝑏

𝑢

𝑣

𝑐

𝑎′
𝑐′

𝑃

𝐾

\directlua{
init_elements()
z.o = point(-1,1)
z.t = point(1,3)
z.P = point(3.2,0)
C.o = circle(z.o, z.t)
L.P = C.o:polar(z.P)
z.a, z.b = L.P:get()
z.u, z.v = intersection(C.o,L.P)
z.K = L.P:projection(z.P)
L.K = C.o:polar(z.K)
z.ka, z.kb = L.K:get()
C.wH = C.o:inversion(L.P)
z.w, z.H = C.wH:get()
z.ap, z.bp = C.o:inversion(z.a, z.b)
L.oa = line(z.o, z.a)
z.cp = intersection(L.K,L.oa)
z.c = C.o:inversion(z.cp)}
\begin{center}
\begin{tikzpicture}

\tkzGetNodes
\tkzDrawCircles[red,thick](o,t)
\tkzDrawCircles(w,H)
\tkzDrawLines[red](P,u P,v)
\tkzDrawLines[blue,thick](u,v)
\tkzDrawLines[add = 1 and 1,

green!50!black,thick](ka,kb)
\tkzDrawSegments[dashed](o,P o,c' o,b' K,c)
\tkzMarkRightAngle[size=.1,

fill=lightgray!15](o,c,K)
\tkzDrawPoints(o,w,K,P,a,b,u,v,a',b',c',c)
\tkzLabelPoints(o,w,b')
\tkzLabelPoints[above right,blue](a,b,u,v)
\tkzLabelPoints[above](c,a',c')
\tkzLabelPoints[right,blue](P)
\tkzLabelPoints[green!50!black,left](K)

\end{tikzpicture}
\end{center}

13.7.6. Method radical_axis(C)

The radical line, also called the radical axis, is the locus of points of equal circle power with respect to two
nonconcentric circles. By the chordal theorem, it is perpendicular to the line of centers (Dörrie 1965).

Weisstein, Eric W. ”Radical Line.” From MathWorld–A Wolfram Web Resource.

Radical axis v1

tkz-elements AlterMundus

https://mathworld.wolfram.com/RadicalLine.html


13. Class circle 111

\directlua{
init_elements()
z.X = point(0,0)
z.B = point(2,2)
z.Y = point(7,1)
z.Ap = point(8,-1)
L.XY = line(z.X, z.Y)
C.XB = circle(z.X, z.B)
C.YAp = circle(z.Y, z.Ap)
z.E,
z.F = C.XB:radical_axis(C.YAp):get()
z.A = C.XB:point(0.4)
T.ABAp = triangle(z.A, z.B, z.Ap)
z.O = T.ABAp.circumcenter
C.OAp = circle(z.O, z.Ap)
_, z.Bp = intersection(C.OAp,C.YAp)
L.AB = line(z.A, z.B)
L.ApBp = line(z.Ap, z.Bp)
z.M = intersection(L.AB,L.ApBp)
z.H = L.XY:projection(z.M)}

Radical axis v2

𝑂

𝑂′

𝑇

𝑇′

𝐾

𝐾′𝑀

\directlua{
init_elements()
z.O = point(-1,0)
z.Op = point(4,-1)
z.B = point(0,2)
z.D = point(4,0)
C.OB = circle(z.O, z.B)
C.OpD = circle(z.Op, z.D)
L.EF = C.OB:radical_axis(C.OpD)
z.E, z.F = L.EF:get()
z.M = L.EF:point(.75)
L.MT,L.MTp = C.OB:tangent_from(z.M)
_, z.T = L.MT:get()
_, z.Tp = L.MTp:get()
L.MK,L.MKp = C.OpD:tangent_from(z.M)
_, z.K = L.MK:get()
_, z.Kp = L.MKp:get()}

Radical axis v3

𝑂 𝑂′𝐵

𝐸

𝐹

𝑇

𝑇′

\directlua{
init_elements()
z.O = point(0,0)
z.B = point(4,0)
z.Op = point(6,0)
C.OB = circle(z.O, z.B)
C.OpB = circle(z.Op, z.B)
L.EF = C.OB:radical_axis(C.OpB)
z.E, z.F = L.EF:get()
z.M = L.EF:point(0.2)
L.tgt = C.OB:tangent_from(z.M)
_, z.T = L.tgt:get()
L.tgtp = C.OpB:tangent_from(z.M)
_, z.Tp =L.tgtp:get()}

Radical axis v4
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𝑂 𝑂′

𝐸

𝐹

𝑀

𝑇

𝑇′

\directlua{
init_elements()
z.O = point(0,0)
z.B = point(5,0)
z.Op = point(3,0)
C.OB = circle(z.O, z.B)
C.OpB = circle(z.Op, z.B)
L.EF = C.OB:radical_axis(C.OpB)
z.E, z.F = L.EF:get()
z.H = L.EF.mid
z.M = L.EF:point(.8)
_,L.t = C.OB:tangent_from(z.M)
_, z.T = L.t:get()
_,L.tp = C.OpB:tangent_from(z.M)
_, z.Tp = L.tp:get()}

13.8. Returns a circle

13.8.1. Method orthogonal_from(pt)

In geometry, two circles are said to be orthogonal if their tangent lines at each point of intersection meet at a
right angle. (See also: Wikipedia — Orthogonal circles).

This method constructs a circle:

– centered at a given point,

– and orthogonal to a given circle.

The result is a circle that intersects the original one at right angles. The construction ensures that the condition
of orthogonality is satisfied at all points of intersection.

𝐶1 𝐶2

𝑇

r 𝛾

d

Circle 1

Circle 2

\directlua{
init_elements()
z.C_1 = point(0,0)
z.C_2 = point(8,0)
z.A = point(5,0)
C = circle(z.C_1, z.A)
z.S,
z.T = C:orthogonal_from(z.C_2):get()}

13.8.2. Method orthogonal_through(pt,pt)

This method constructs a circle that is orthogonal to a given circle and passes through two specified points.

Geometrically, the resulting circle satisfies:

– it intersects the given circle orthogonally (i.e., the tangents at their intersection points are perpendicular),

– it passes through the two given points.

Special cases:

– Inverse points: If the two points are inverse with respect to the given circle, there is an infinite number of
solutions, all with their centers lying on the perpendicular bisector of the segment joining the two points.
The chosen solution is the one whose center is the midpoint of the two points.

– Collinear with center (non-inverse): If the two points are collinear with the center of the given circle but
are not inverse points, no orthogonal circle exists.
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– General case: In all other situations, there is a unique solution.

𝑂

𝐴

𝑧1
𝑧2𝑐

\directlua{
init_elements()
z.O = point(0,1)
z.A = point(1,0)
z.z1 = point(-1.5,-1.5)
z.z2 = point(2.5,-1.25)
C.OA = circle(z.O, z.A)
C.z1 = C.OA:orthogonal_through(z.z1, z.z2)
z.c = C.z1.center}

13.8.3. Method radical_circle(C,C)

Radical circle of three given circles.

This method constructs the radical circle associated with three given circles. It is defined as the circle:

– centered at the radical center (the common intersection point of the three radical axes),

– and orthogonal to all three given circles.

An important geometric property is that a circle centered at the radical center and orthogonal to one of the
original circles is necessarily orthogonal to the other two as well.

This construction plays a key role in advanced configurations such as coaxal systems, power of a point geometry,
and triangle centers.

(Reference: Weisstein, Eric W. ”Radical Circle.” MathWorld)

\directlua{
init_elements()
z.A = point(0,0)
z.B = point(6,0)
z.C = point(0.8,4)
T.ABC = triangle(z.A, z.B, z.C)
C.exa = T.ABC:ex_circle()
z.I_a, z.Xa = C.exa:get()
C.exb = T.ABC:ex_circle(1)
z.I_b, z.Xb = C.exb:get()
C.exc = T.ABC:ex_circle(2)
z.I_c, z.Xc = C.exc:get()
C.ortho = C.exa:radical_circle(C.exb,C.exc)
z.w, z.a = C.ortho:get()}
\begin{tikzpicture}[scale = .5]

\tkzGetNodes
\tkzDrawPolygon(A,B,C)
\tkzDrawCircles(I_a,Xa I_b,Xb I_c,Xc)
\tkzDrawCircles[red,thick](w,a)
\tkzDrawPoints(A,B,C)
\tkzLabelPoints(A,B,C)

\end{tikzpicture}
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𝐴 𝐵

𝐶

13.8.4. Method CPP

This method is presented in the document Euclidean Geometry presented in altermundus.fr.

𝑂 𝐶

𝐴

𝐵

\directlua{
init_elements()
z.A = point(5,4)
z.B = point(3,0)
z.O = point(0,0)
z.C = point(1,0)
C.OC = circle(z.O, z.C)
PA.center,
PA.through,
n = C.OC:CPP(z.A, z.B)

}
\begin{tikzpicture}
\tkzGetNodes
\tkzDrawCircle[blue](O,C)
\tkzDrawPoints(A,B,C,O)
\tkzDrawCirclesFromPaths[draw,

red](PA.center,PA.through)
\end{tikzpicture}

13.8.5. Method CCP(C,p[,mode])

This method is presented in the document Euclidean Geometry presented in altermundus.fr.
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𝑃
\directlua{

init_elements()
z.A = point(0, 0)
z.TA = point(3, 0)
z.B = point(6, 2)
z.TB = point(6, 1)
z.P = point(3, 6)
C.A = circle(z.A, z.TA)
C.B = circle(z.B, z.TB)
PA.center, PA.through = C.A:CCP(C.B,
z.P,"external")

z.O1 = PA.center:get(1)
z.O2 = PA.center:get(2)
z.T1 = PA.through:get(1)
z.T2 = PA.through:get(2)
PA.center, PA.through = C.A:CCP(C.B,
z.P,"internal")

z.O3 = PA.center:get(1)
z.O4 = PA.center:get(2)
z.T3 = PA.through:get(1)
z.T4 = PA.through:get(2)}

\begin{center}
\begin{tikzpicture}[scale =.5]

\tkzGetNodes
\tkzDrawCircles[thick](A,TA B,TB)
\tkzDrawCircles[red](O1,T1 O2,T2)
\tkzDrawCircles[blue](O3,T3 O4,T4)
\tkzDrawPoints[size=3](P)
\tkzLabelPoints[above](P)
\end{tikzpicture}
\end{center}

13.8.6. Method CLP(L,p)

This method is presented in the document Euclidean Geometry presented in altermundus.fr.
\directlua{

init_elements()
z.A = point(0, 0)
z.B = point(4, 0)
L.AB = line (z.A, z.B)
z.O = point(3, 3)
z.T = point(3, 2)
z.P = point(2, .25)
C.OT = circle(z.O, z.T)
PA.center, PA.through = C.OT:CLP(L.AB, z.P)
z.O1 = PA.center:get(1)
z.O2 = PA.center:get(2)
PA.center,
PA.through = C.OT:CLP(L.AB, z.P,'internal')
z.O3 = PA.center:get(1)
z.O4 = PA.center:get(2)}

\begin{tikzpicture}
\tkzGetNodes
\tkzDrawCircles[thick](O,T)
\tkzDrawCircles[red](O1,P O2,P)
\tkzDrawCircles[cyan](O3,P O4,P)
\tkzDrawLines[thick](A,B)
\tkzDrawPoints[size = 2](P)
\tkzDrawPoints(A,B,O,O1,O2,O3,O4)

\end{tikzpicture}
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13.8.7. Method CLL(L,L,<choice,inside>)

This method is presented in the document Euclidean Geometry presented in altermundus.fr.

𝑂

\directlua{
init_elements()
z.A = point(0, 0)
z.B = point(6, -2)
L.AB = line(z.A, z.B)
z.C = point(-3, -4)
z.D = point(3, 1)
L.CD = line(z.C, z.D)
z.O = z.D + point(-3,1)
z.X = z.O + point(0,1)
C.OX = circle(z.O, z.X)
PA.center, PA.through = C.OX:CLL(L.AB, L.CD,"all")
tkz.nodes_from_paths(PA.center, PA.through)}

\begin{center}
\begin{tikzpicture}[scale=.75]
\tkzGetNodes
\tkzInit[xmin=-5,xmax=10,ymin=-1,ymax=5]
\tkzClip
\tkzDrawLines[blue,add =1 and .25](A,B)
\tkzDrawLines[blue,add =.25 and 1](C,D)
\tkzDrawPoints[blue,size=3](O)
\tkzDrawCirclesFromPaths[draw,red,thick](PA.center,PA.through)
\tkzDrawCircles[thick,blue](O,X)
\tkzDrawPoints[red,size=3](w1)
\tkzLabelPoints[red](O)
\end{tikzpicture}
\end{center}

13.9. Case: CCL(C2, L)

This method is presented in the document Euclidean Geometry presented in altermundus.fr.
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\directlua{
init_elements()
z.A = point(-4, 4)
z.B = z.A + point(3, 0)
C.AB = circle(z.A, z.B)
z.C = point(3,2)
z.D = z.C + point(1,0)
C.CD = circle(z.C, z.D)
z.E = point(-3, 0)
z.F = point(5, 0)
L.EF = line(z.E, z.F)
PA.center, PA.through,n = C.AB:CCL(C.CD, L.EF)
tkz.nodes_from_paths(PA.center, PA.through)
}

\begin{center}
\begin{tikzpicture}[scale=.5]

\tkzGetNodes
\tkzInit[xmin=-8,xmax=8,ymin=-8,ymax=8]
\tkzClip
\tkzDrawLines[thick,blue](E,F)
\tkzDrawCircles[thick,blue](A,B C,D)
\tkzDrawCirclesFromPaths[draw,purple,thick](PA.center, PA.through)
\end{tikzpicture}
\end{center}

13.9.1. Case: CCC(C2, C3 [, opts])

This method is presented in the document Euclidean Geometry presented in altermundus.fr.
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\directlua{
init_elements()
z.A = point(0, 0)
z.B = point(6, 0)
z.C = point(2, 5)
z.a = z.A + point(3, 0)
z.b = z.B + point(2, 0)
z.c = z.C + point(1, 0)
C.Aa = circle(z.A, z.a)
C.Bb = circle(z.B, z.b)
C.Cc = circle(z.C, z.c)
PA.center, PA.through, n = C.Aa:CCC(C.Bb, C.Cc)
}
\begin{center}
\begin{tikzpicture}[ scale = .5,gridded]
\tkzInit[xmin=-8,xmax=12,ymin=-8,ymax=10]
\tkzClip
\tkzGetNodes
\tkzDrawCircles[thick,blue](A,a B,b C,c)
\tkzDrawCirclesFromPaths[draw,
purple,thick](PA.center, PA.through)

\end{tikzpicture}
\end{center}
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13.9.2. Case: CCC_gergonne(C_2, C_3)

\directlua{
z.A = point(0, 0)
z.a = z.A + point (1, 0)
z.B = point (4, 1)
z.b = z.B + point (2, 0)
z.C = point (2, 6)
z.c = z.C + point (3, 0)
C.Aa = circle(z.A, z.a)
C.Bb = circle(z.B, z.b)
C.Cc = circle(z.C,z.c)
PA.center, PA.through = C.Aa:CCC_gergonne(C.Bb, C.Cc)

}
\begin{center}
\begin{tikzpicture}[scale = 0.7]
\tkzInit[xmin=-8,xmax=12,ymin=-8,ymax=10]
\tkzClip
\tkzGetNodes
\tkzDrawCircles[fill=blue!15](A,a B,b C,c)
\tkzDrawCirclesFromPaths[draw,purple,thick](PA.center, PA.through)

\end{tikzpicture}
\end{center}

13.9.3. Method midcircle

According to Eric Danneels and Floor van Lamoen:
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A midcircle of two given circles is a circle that maps one to the other via an inversion. Midcircles
belong to the same pencil of circles as the two originals. The center(s) of the midcircle(s) correspond
to the centers of similitude of the given circles.

I have adopted the term midcircle used by Eric Danneels and Floor van Lamoen, as well as by Eric W.
Weisstein, but many other names exist, such as mid-circle or circle of antisimilitude [Wikipedia]. The
latter name can be found in Advanced Euclidean Geometry by Roger A. Johnson (2007). On the website
cut-the-knot.org, reference is made to the bisectal circle, translated from French as cercle bissecteur and
used by Hadamard, but this refers to the case where the two given circles intersect.
Four cases can be distinguished:

(i) The two circles intersect: There are two midcircles, centered at the internal and external centers of
similitude;

(ii) One circle lies entirely inside the other: There is a unique midcircle centered at the internal center
of similitude;

(iii) One circle lies entirely outside the other: There is a unique midcircle centered at the external center
of similitude;

(iv) Tangency or single-point intersection: These are limiting cases of the configurations above.

Let’s examine at each of these cases in more detail:

(i) If the two given circles intersect, then there are two circles of inversion through their common points,
with centers at the centers of similitudes. The two midcircles bisect their angles and are orthogonal to
each other. The centers of the midcircles are the internal center of similitude and the external center of
similitude 𝐼 and 𝐽.

– Suppose (𝒜) and (ℬ) are two intersecting circles.
– Their common points define two inversion circles (midcircles), orthogonal to each other.
– The centers of these midcircles are the internal and external centers of similitude, denoted 𝐼 and 𝐽.

To construct these centers:
– Take two diameters 𝐸𝐻 of (𝒜) and 𝐹𝐺 of (ℬ), such that the segments 𝐸𝐻 and 𝐹𝐺 are parallel.
– The intersection of lines (𝐺𝐸) and (𝐴𝐵) gives point 𝐽, the external center of similitude.
– The intersection of lines (𝐸𝐹) and (𝐴𝐵) gives point 𝐼, the internal center of similitude.

The circles (ℐ) and (𝒥), centered respectively at 𝐼 and 𝐽, are orthogonal and form the midcircles of (𝒜)
and (ℬ). The division (𝐴,𝐵;𝐼 ,𝐽 ) is harmonic.

𝐴𝐼 𝐽

𝐺

𝐸

𝐵

𝐹

𝐻𝑋

𝑌

\directlua{
init_elements()
z.A = point(1, 0)
z.B = point(3, 0)
z.O = point(2.1, 0)
z.P = point(1,0)
C.AO = circle(z.A, z.O)
C.BP = circle(z.B, z.P)
z.E = C.AO.south
z.H = C.AO.north
z.F = C.BP.north
z.G = C.BP.south
C.IT,C.JV = C.AO:midcircle(C.BP)
z.I, z.T = C.IT:get()
z.J, z.V = C.JV:get()
z.X, z.Y = intersection(C.AO,C.BP)}
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(ii) One given circle lies entirely within the other.
This configuration is slightly more delicate to handle. To construct the midcircle, we proceed as follows:

– First, construct two auxiliary circles (𝛼) and (𝛽), each tangent to both of the given circles — one
internally, one externally.

– Then, construct the radical circle orthogonal to both (𝛼) and (𝛽).
– The center of this radical circle is the radical center, which coincides with the internal center of
similitude of the original circles.

This radical circle is the unique midcircle in this case: it swaps the two original circles via inversion and
lies in the same pencil of circles.

𝐴 𝐵𝐼
(𝛼)

(𝛽)

(𝛾)

\directlua{
init_elements()
z.A = point(3, 0)
z.B = point(5, 0)
z.O = point(2, 0)
z.P = point(1, 0)
L.AB = line(z.A, z.B)
C.AO = circle(z.A, z.O)
C.BP = circle(z.B, z.P)
z.R, z.S = intersection(L.AB,C.BP)
z.U, z.V = intersection(L.AB,C.AO)
C.SV = circle:diameter(z.S, z.V)
C.UR = circle:diameter(z.U, z.R)
z.x = C.SV.center
z.y = C.UR.center
C.IT = C.AO:midcircle(C.BP)
z.I, z.T = C.IT:get()}

(iii) The two given circles are external to each other.
In this configuration, there exists a unique midcircle whose center is the external center of similitude
of the two given circles.

Let 𝐼 denote this external center of similitude. To construct the corresponding inversion circle (the
midcircle), we proceed as follows:

– Construct the external center 𝐼 based on the line joining the centers of the two given circles and their
respective radii.

– Let 𝐸 and 𝐹 be the points of tangency (or auxiliary points) such that 𝐼𝐸 ⋅ 𝐼𝐹 = 𝐼𝐻 2.
– The point 𝐻 lies on the desired midcircle, and the circle centered at 𝐼 and passing through 𝐻 is the

unique external midcircle.

This circle performs an inversion that maps one circle onto the other and lies in the same pencil of circles.

(iv) The two given circles are external to each other.
In this configuration, there exists a unique midcircle whose center is the external center of similitude
of the two given circles.

Let 𝐼 denote this external center of similitude. To construct the corresponding inversion circle (the
midcircle), we proceed as follows:

– Construct the external center 𝐼 based on the line joining the centers of the two given circles and their
respective radii.

– Let 𝐸 and 𝐹 be the points of tangency (or auxiliary points) such that 𝐼𝐸 ⋅ 𝐼𝐹 = 𝐼𝐻 2.
– The point 𝐻 lies on the desired midcircle, and the circle centered at 𝐼 and passing through 𝐻 is the

unique external midcircle.
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This circle performs an inversion that maps one circle onto the other and lies in the same pencil of circles.

𝐴 𝐵

𝐸

𝐹

𝐼

𝐻

\directlua{
init_elements()
z.A = point(0, 0)
z.B = point(4, 0)
z.a = point(.5, 0)
z.b = point(1, 0)
C.Aa = circle (z.A, z.a)
C.Bb = circle (z.B, z.b)
L.AB = line(z.A, z.B)
z.E = C.Aa.north
z.F = C.Bb.north
L.EF = line(z.E, z.F)
C.IT = C.Aa:midcircle(C.Bb)
z.I, z.T = C.IT:get()
L.TF = C.Bb:tangent_from(z.I)
z.H = intersection(L.TF,C.IT)
z.E = intersection(L.TF,C.Aa)
z.F=L.TF.pb}

(v) The two circles are tangent.

– If circle (ℬ) is externally tangent to circle (𝒜), the construction of the midcircle is identical to the
case of two disjoint circles. The external center of similitude still exists, and the inversion circle
centered at this point transforms one circle into the other.

– If one of the circles lies inside the other and they are internally tangent, the construction simplifies.
The center of the midcircle is the internal center of similitude, which coincides with the point of
tangency. The inversion circle is then centered at this point and passes through any auxiliary point
satisfying the inversion relation.

𝐴 𝐵

𝐸

𝐹

𝐼

𝐻

\directlua{
init_elements()
local a,b,c,d
z.A = point(0, 0)
z.B = point(4, 0)
z.a = point(1, 0)
z.b = point(1, 0)
C.Aa = circle (z.A, z.a)
C.Bb = circle (z.B, z.b)
L.AB = line(z.A, z.B)
z.E = C.Aa.north
z.F = C.Bb.north
L.EF = line(z.E, z.F)
C.IT = C.Aa:midcircle(C.Bb)
z.I, z.T = C.IT:get()
L.TF = C.Bb:tangent_from(z.I)
z.H = intersection(L.TF,C.IT)
z.E = intersection(L.TF,C.Aa)
z.F=L.TF.pb}
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𝐴 𝐵
𝐼

\directlua{
init_elements()
z.A = point(2, 0)
z.B = point(4, 0)
z.a = point(1, 0)
z.b = point(1, 0)
C.Aa = circle(z.A, z.a)
C.Bb = circle(z.B, z.b)
C.IT = C.Aa:midcircle(C.Bb)
z.I,
z.T = C.IT:get()}

Midcircle between a circle and a line
It is possible to generalize the notion of midcircle to the case of a circle and a line. A midcircle of a circle and
a straight line is defined as a circle with respect to which the given circle and line are mutually inverse.
In this situation, there are only three possible cases, but they share several common features. The center of
the midcircle lies on the line passing through the center of the given circle and perpendicular to the given line.
Moreover, the center is also one of the intersection points of the circle and the line.
Three cases can be distinguished:

(i) The circle and the line intersect;

(ii) The circle and the line are disjoint;

(iii) The circle and the line are tangent.

Let’s look at each case:
Note: It should be noted that in each case, inversion allows us to verify that the two objects are inverses of
each other.

1. The circle and the line are disjoint.

\directlua{
init_elements()
z.o = point(-1,1)
z.a = point(1,2)
C.oa = circle(z.o, z.a)
z.c = point(3,2)
z.d = point(0,4)
L.cd = line(z.c, z.d)
C.OH = C.oa:inversion(L.cd)
z.O, z.H = C.OH:get()
L.inv = C.oa:inversion(C.OH)
z.x, z.y = L.inv:get()
C.inv = C.OH:midcircle(L.cd)
z.w, z.t = C.inv:get()
z.P = L.cd:projection(z.o)
z.T = intersection(C.inv,line(z.o,z.P))}
\begin{center}
\begin{tikzpicture}[scale=.75]
\tkzGetNodes
\tkzDrawCircles[blue](O,H)
\tkzDrawCircles[red](w,t)
\tkzDrawLines[blue](c,d)
\tkzDrawLines[lightgray](o,P)
\tkzDrawPoint(w)
\tkzMarkRightAngle(w,P,c)
\end{tikzpicture}
\end{center}
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2. The circle and the line intersect

\directlua{
init_elements()
z.o = point(0,1)
z.a = point(1,3)
C.oa = circle(z.o, z.a)
z.c = point(-1,2)
z.d = point(1,3)
L.cd = line(z.c, z.d)
C.OH = C.oa:inversion(L.cd)
z.O, z.H = C.OH:get()
L.inv = C.oa:inversion(C.OH)
z.x, z.y = L.inv:get()
C.inv = C.OH:midcircle(L.cd)
z.w, z.t = C.inv:get()
z.P = L.cd:projection(z.o)
z.T = intersection(C.inv,line(z.o,z.P))}
\begin{center}
\begin{tikzpicture}[scale=.75]
\tkzGetNodes
\tkzDrawCircles[blue](O,H)
\tkzDrawCircles[red](w,t)
\tkzDrawLines[blue,add = 2 and 1](c,d)
\tkzDrawLines[lightgray](o,T)
\tkzDrawPoint(w)
\tkzMarkRightAngle(w,P,c)
\end{tikzpicture}
\end{center}

3. The circle and the line are tangent

\directlua{
init_elements()
z.o = point(-1,1)
z.a = point(1,3)
C.oa = circle(z.o, z.a)
z.c = point(3,2)
z.d = point(0,4)
L.cd = C.oa:tangent_at(z.a)
C.OH = C.oa:inversion(L.cd)
C.wt = C.OH:midcircle(L.cd)
z.O, z.H = C.OH:get()
z.w, z.t = C.wt:get()
z.c, z.d = L.cd:get()}
\begin{center}
\begin{tikzpicture}
\tkzGetNodes
\tkzDrawCircles[red](w,t)
\tkzDrawCircles[blue](O,H)
\tkzDrawLines[blue](c,d)
\tkzDrawLines[lightgray](o,H)
\tkzDrawPoint(w)
\tkzMarkRightAngle(w,a,c)
\end{tikzpicture}
\end{center}

13.10. Transformations: the result is an object

13.10.1. Method inversion(obj):point, line and circle

The inversion method can be used on a point, a group of points, a line or a circle. Depending on the type of
object, the function determines the correct algorithm to use.
Inversion:point
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Returns a point.

𝑎

𝑜

𝑐

𝑑

The
pow

er o
f c i

s 10
.0

\directlua{
init_elements()
z.o = point(-1,2)
z.a = point(2,1)
C.oa = circle(z.o, z.a)
z.c = point(3,4)
z.d = C.oa:inversion(z.c)
p = C.oa:power(z.c)}

\begin{center}
\begin{tikzpicture}[scale =.75]

\tkzGetNodes
\tkzDrawCircle(o,a)
\tkzDrawSegments(o,a o,c)
\tkzDrawPoints(a,o,c,d)
\tkzLabelPoints(a,o,c,d)
\tkzLabelSegment[sloped,above=1em](c,d){%
The power of c is \tkzUseLua{p}}

\end{tikzpicture}
\end{center}

Inversion:line
The result is either a straight line or a circle.

𝑎

𝑜

𝑐

𝑑

𝐻

\directlua{
init_elements()
z.o = point(-1,1)
z.a = point(1,3)
C.oa = circle(z.o, z.a)
z.c = point(3,2)
z.d = point(0,4)
L.cd = line(z.c, z.d)
C.OH = C.oa:inversion(L.cd)
z.O, z.H = C.OH:get()}

\begin{center}
\begin{tikzpicture}

\tkzGetNodes
\tkzDrawCircles(o,a)
\tkzDrawCircles[new](O,H)
\tkzDrawLines(c,d o,H)
\tkzDrawPoints(a,o,c,d,H)
\tkzLabelPoints(a,o,c,d,H)

\end{tikzpicture}
\end{center}

Inversion:circle
The result is either a straight line or a circle.
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𝑎

𝑏

𝑐

𝑑

𝑒

𝑓

𝑜

𝑝

𝑞

\directlua{
init_elements()
z.o, z.a = point(-1,3),point(2,3)
z.c = point(-2,1)
z.e, z.d = point(-2,7),point(-3,5)
C.oa = circle(z.o, z.a)
C.ed = circle(z.e, z.d)
C.co = circle(z.c, z.o)
obj = C.oa:inversion(C.co)
if obj.type == "line" then

z.p, z.q = obj:get()
else

z.f, z.b = obj:get()
end
obj = C.oa:inversion(C.ed)
if obj.type == "line" then
z.p, z.q = obj:get()

else
z.f, z.b = obj:get()

end
color = "orange"}

\begin{center}
\begin{tikzpicture}[scale =.75]

\tkzGetNodes
\tkzDrawCircles[black](o,a)
\tkzDrawCircles[teal](c,o e,d)
\tkzDrawCircles[\tkzUseLua{color}](f,b)
\tkzDrawSegments[\tkzUseLua{color}](p,q)
\tkzDrawPoints(a,...,f,o,p,q)

\tkzLabelPoints(a,...,f,o,p,q)
\end{tikzpicture}
\end{center}

13.10.2. Method inversion_neg(obj)

Syntax:
local Q = C:inversion_neg(obj)
Purpose:
This method performs the inversion with respect to the circle 𝐶 but with a negative power. For a point 𝑃 ≠𝑂,
this means that

⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗𝑂𝑃 ′ ⋅ ⃗⃗⃗⃗⃗⃗⃗𝑂𝑃=−𝑅2,

that is, 𝑃 ′ is the inverse of 𝑃 on the opposite half–line of 𝑂𝑃. From a geometric point of view, the image set
(line or circle) is the same as with the ordinary inversion, but the points are taken with reversed orientation
along that set.
Arguments:

– obj – a point, a line (possibly not passing through 𝑂), or a circle.

Returns:

– If obj is a point 𝑃 ≠𝑂: the point 𝑃 ′ = inversion_neg(𝑃).

– If obj is a line not passing through 𝑂: the same circle image as with C:inversion(line) (it passes
through 𝑂), but the orientation of the points on it is reversed.

– If obj is a line passing through 𝑂: the image is the same line.

– If obj is a circle not passing through 𝑂: the image is the same circle as with inversion, but with reversed
orientation.

– If obj is a circle passing through 𝑂: the image is the same line.
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Details:
For a point 𝑃,

⃗𝑂𝑃 ′ =− 𝑅2

‖𝑂𝑃‖2
⃗𝑂𝑃.

This is equivalent to performing the ordinary inversion followed by a central symmetry with respect to 𝑂 (taking
the antipode).
For lines and circles, inversion_neg produces the same geometric image as inversion; the negative sign only
affects the parametrization along that image.
About the next example:
The aim is to find the circles passing through a point 𝑃 tangent to a line 𝐿 and a circle.
In the example given above, the point P2 = C.inv2:inversion_neg(P) lies on the required circle because the
negative inversion places the image of 𝑃 on the same geometric locus as the standard inversion, but on the
opposite direction relative to 𝑂. When combined with CPP(P,P2), this choice selects the correct circle among
the possible tangent ones, ensuring that 𝑃2 lies exactly on the desired solution circle.

𝑃

𝑃1
𝑃2

𝐿
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\directlua{
init_elements()
z.A = point(0, -5)
z.B = point(5, -3)
z.O = point(0, 0)
z.C = point(2, 0)
L.AB = line(z.A, z.B)
C.OC = circle(z.O, z.C)
L.main = L.AB:orthogonal_from(z.O)
z.P = point(-4, -5)
C.inv, C.inv2 = C.OC:midcircle(L.AB)
z.P1 = C.inv:inversion(z.P)
local center,
through = C.OC:CPP(z.P,z.P1)
z.w1 = center:get(1)
z.t1 = through:get(1)
z.w2 = center:get(2)
z.t2 = through:get(2)
z.P2 = C.inv2:inversion_neg(z.P)
PA.c, PA.t = C.OC:CPP(z.P,z.P2)
tkz.nodes_from_paths(PA.c, PA.t,"w","t",3)

}
\begin{center}
\begin{tikzpicture}[scale=.5]
\tkzInit[xmin=-8,xmax=12,ymin=-8,ymax=10]
\tkzClip
\tkzGetNodes
\tkzDrawLines[thick,blue, add = 1 and 1](A,B)
\tkzDrawCircle[thick,blue](O,C)
\tkzDrawCircles[thick,purple](w1,t1 w2,t2)
\tkzDrawCircles[orange,thick](w3,t3)
\tkzDrawArc[delta=10,orange,thick](w4,P)(P2)
\tkzDrawPoints(P,P1,P2)
\tkzLabelPoints(P,P1,P2)
\tkzLabelLine[below,pos=1.25](A,B){$L$}

\end{tikzpicture}
\end{center}

13.10.3. Method path(p1, p2, N)

Purpose: The circle class includes a method path to create a path object representing a circular arc between
two points on the circle.

Syntax: This method samples the arc between two points za and zb lying on the circle, using a specified
number of subdivisions.

C = circle(z.O, z.A)
PA.arc = C:path(z.B, z.C, 100)

The arc begins at z.B and ends at z.C, and is divided into 100 steps.
You can draw the resulting path in TikZ using:

\tkzDrawCoordinates[smooth](PA.arc)

Example usage:
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𝐴

𝐵 𝐶

\directlua{
z.O = point(0, 0)
z.A = point(5, 0)
C.OA = circle(z.O, z.A)
z.S = C.OA.south
C.SO = circle(z.S, z.O)
z.B,z.C = intersection(C.OA, C.SO)
C.BC = circle(z.B, z.C)
L.BC = line(z.B, z.C)
z.D = intersection(C.OA, C.BC)
C.CD = circle(z.C, z.D)
PA.p1 = C.SO:path(z.C, z.B, 20)
PA.p2 = C.BC:path(z.C, z.D, 20)
PA.p3 = C.CD:path(z.D, z.B, 20)
PA.path = (-PA.p1) + PA.p2 + PA.p3
}
\begin{tikzpicture}[scale = .5]
\tkzGetNodes
\tkzDrawCircles(O,A S,O)
\tkzDrawArc(B,C)(D)
\tkzDrawArc(C,D)(B)
\tkzDrawCoordinates[fill = purple!20,

opacity=.4](PA.path)
\tkzDrawCoordinates[smooth,red,

thick](PA.path)
\tkzDrawPoints(A,O,B,C,S,D)
\tkzLabelPoints(A,B,C)
\end{tikzpicture}
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14. Class triangle

The variable T holds a table used to store triangle objects. Its use is optional: you are free to choose another
variable name, but using T is the recommended convention for clarity and consistency across examples and
documentation.

If you define your own table, you must initialize it manually. However, if you use the default variable T, the
init_elements() function will automatically clear and reset the T table when called.

Each triangle object is created using the new method, which takes three points as input and generates all the
associated geometric attributes.

14.1. Creating a triangle

The triangle class is used to define triangles from three points. It automatically computes a wide range of
geometric attributes associated with the triangle.

T.ABC = triangle:new(z.A, z.B, z.C)

Short form:
The short form triangle(z.A, z.B, z.C) is equivalent and more commonly used:

T.ABC = triangle(z.A, z.B, z.C)

14.2. Attributes of a triangle

The triangle object is created using the method new, for example:

T.ABC = triangle(z.A, z.B, z.C)

Several attributes are automatically computed and stored:

– Vertices: The three vertices are accessible via:
T.ABC.pa, T.ABC.pb, T.ABC.pc

– Sides: The side lengths are:

𝑇.𝐴𝐵𝐶.𝑎 = length of 𝐵𝐶
𝑇.𝐴𝐵𝐶.𝑏 = length of 𝐴𝐶
𝑇.𝐴𝐵𝐶.𝑐 = length of 𝐴𝐵

– Area: The area is computed using Heron’s formula:

𝑠 = 𝑎+𝑏+𝑐
2

, Area=√𝑠(𝑠−𝑎)(𝑠−𝑏)(𝑠−𝑐)

This value is stored in T.ABC.area.

– Perimeter: The perimeter is the sum of side lengths:

𝑃 = 𝑎+𝑏+𝑐

It is stored in T.ABC.perimeter.

– Angles: The internal angles 𝛼, 𝛽, and 𝛾 (at 𝐴, 𝐵, and 𝐶 respectively) are computed using the law of
cosines:

cos(𝛼) = 𝑏2+𝑐2−𝑎2

2𝑏𝑐
, cos(𝛽) = 𝑎2+𝑐2−𝑏2

2𝑎𝑐
, cos(𝛾) = 𝑎2+𝑏2−𝑐2

2𝑎𝑏
They are stored in T.ABC.alpha, T.ABC.beta, and T.ABC.gamma.
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These attributes define the essential geometric properties of the triangle and are used in numerous derived
methods and constructions.

Table 10: Triangle attributes.
Attributes Reference

pa [14.2.1]
pb idem
pc idem
type ’triangle’
circumcenter [14.2.2]
centroid idem
incenter idem
orthocenter idem
eulercenter idem
spiekercenter idem; [14.2.2; 3.1.4]
a [14.2.5]
b
c
alpha [ 14.2.3]
beta
gamma
alpha_ [ 14.2.4]
beta_
gamma_
ab [14.2.6]
bc
ca
semiperimeter [14.2.5]
area
orientation [14.2.7]
cross [14.2.8]
inradius [14.2.5]
circumradius [14.2.5]

14.2.1. Triangle attributes: defining points

Consider a triangle 𝐴𝐵𝐶. We want to construct a new triangle whose vertices are the reflections of 𝐴, 𝐵, and
𝐶 with respect to the midpoints of their opposite sides.

To achieve this, we first need to determine the midpoints of the sides of triangle 𝐴𝐵𝐶. The most straightforward
approach is to use the method medial, which returns the medial triangle, i.e., the triangle formed by the
midpoints of [𝐵𝐶], [𝐴𝐶], and [𝐴𝐵].

Once this medial triangle is constructed, its vertices can be accessed through standard attributes:

T.medial.A, T.medial.B, T.medial.C

Alternatively, from the last, the method get() retrieves all three vertices at once in a convenient Lua-compatible
syntax.

For a practical illustration of this method, see the associated tikzpicture example in the documentation.

\directlua{ init_elements()
z.A = point(0, 0)
z.B= point(3, 0)
z.C = point(1, 2)
T.ABC = triangle(z.A, z.B, z.C)
T.m = T.ABC:medial()
z.ma, z.mb, z.mc = T.m.pa, T.m.pb, T.m.pc
z.Ap = z.ma:symmetry(z.A)
z.Bp = z.mb:symmetry(z.B)
z.Cp = z.mc:symmetry(z.C)}
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14.2.2. Triangle attributes: characteristic points

The tikzpicture environment can be viewed in the documentation.

𝐴 𝐵

𝑂𝐺𝐼
𝐻 𝑆

𝐶
\directlua{
init_elements()
z.A = point(0, 0)
z.B = point(4, 0)
z.C = point(1, 3)
T.ABC = triangle(z.A, z.B, z.C)
z.O = T.ABC.circumcenter
z.I = T.ABC.incenter
z.H = T.ABC.orthocenter
z.G = T.ABC.centroid
z.S = T.ABC.spiekercenter}

14.2.3. Triangle attributes: angles

Numeric measures. The variables alpha, beta, and gamma are numbers (measured in radians). They are
obtained by evaluating

𝛼 = |∠(𝑍𝐴,𝑍𝐵,𝑍𝐶)|, 𝛽 = |∠(𝑍𝐵,𝑍𝐶,𝑍𝐴)|, 𝛾 = |∠(𝑍𝐶,𝑍𝐴,𝑍𝐵)|,

where get_angle_ returns an oriented angle (possibly negative, depending on the orientation of the three points).
The use of math.abs ensures that alpha, beta, and gamma represent the unsigned interior angle measures.

56.31∘ 45∘

78.69∘

The sum of the angles is: 180.0

\directlua{init_elements()
z.A = point(0,0)
z.B = point(5,0)
z.C = point(2,3)
T.ABC = triangle(z.A, z.B, z.C)
S = T.ABC.alpha + T.ABC.beta + T.ABC.gamma}

\def\wangle#1{\tkzPN[2]{%
\tkzUseLua{math.deg(T.ABC.#1)}}}

\begin{center}
\begin{tikzpicture}
\tkzGetNodes
\tkzDrawPolygons(A,B,C)
\tkzLabelAngle(B,A,C){$\wangle{alpha}^\circ$}
\tkzLabelAngle(C,B,A){$\wangle{beta}^\circ$}
\tkzLabelAngle(A,C,B){$\wangle{gamma}^\circ$}
\end{tikzpicture}

\end{center}
The sum of the angles is: \tkzUseLua{math.deg(S)}

14.2.4. Triangle attributes: angle objects

Angle objects: The variables alpha_, beta_, and gamma_ are objects of class angle created with angle:new(...).
They store the defining triple of points and provide methods to retrieve the measure (in radians or degrees) and
to support later geometric operations or drawings based on that angle.

Remark: The function get_angle_ returns an oriented angle, whose sign depends on the order of the three
points. Its value is typically in the interval (−𝜋,𝜋]. Taking the absolute value therefore produces the (non–
oriented) interior angle measure.
By contrast, an object of class angle may preserve the orientation information, depending on its internal
implementation. This distinction allows one to work either with pure numeric measures (for computations) or
with full geometric angle objects (for constructions and drawings).
Example:
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A(value) = 0.58800260354757
A(raw) = -0.58800260354757
A(deg) = 33.69006752598

𝐴 𝐶

𝐵

\directlua{
init_elements()
z.A = point(0, 0)
z.C = point(3, 0)
z.B = point(3, 2)
T.ABC = triangle(z.A, z.B, z.C)
A.A = T.ABC.alpha_
A.B = T.ABC.beta_
T.C = T.ABC.gamma_
tex.print("A(value) = \\", A.A.value)
tex.print('\\\\')
tex.print("A(raw) = \\", A.A.raw)
tex.print('\\\\')
tex.print("A(deg) = \\", A.A.deg)}

\begin{center}
\begin{tikzpicture}

\tkzGetNodes
\tkzDrawPolygon(A,B,C)
\tkzDrawPoints(A,B,C)
\tkzLabelPoints(A,C)
\tkzLabelPoints[above](B)

\end{tikzpicture}
\end{center}

14.2.5. Triangle attributes: lengths

You can access different lengths, in particular side lengths with:

T.ABC = triangle(z.A, z.B, z.C)
p = T.ABC.a + T.ABC.b +T.ABC.c % p perimeter of T
T.ABC.a, T.ABC.b and T.ABC.c are the lengths of the opposite sides to A, B and C.
% Other accessible lengths
s = T.ABC.semiperimeter
ri = T.ABC.inradius
R = T.ABC.circumradius
A = T.ABC.area

14.2.6. Triangle attributes: straight lines

Several attributes associated with triangle sides and lines simplify code writing and improve readability.

Consider a triangle 𝐴𝐵𝐶. Suppose you want to use the midpoint of the side [𝐵𝐶] (which can also be seen as the
base of the median from 𝐴). There are multiple ways to construct this midpoint in Lua, but the most concise
is:

T.bc.mid

Here:

– T.ABC.bc is the attribute representing the line (𝐵𝐶),

– It is equivalent to writing L.BC = line(z.B, z.C),

– But with a triangle object already defined as T.ABC, you can write simply:
L.BC = T.ABC.bc

This approach saves time and space in scripts involving medians, altitudes, bisectors, or projections based on
triangle sides.

tkz-elements AlterMundus



14. Class triangle 134

𝐴 𝐵

𝐶

𝑀

𝑄

\directlua{
z.A = point(0, 0)
z.B = point(5, 0)
z.C = point(2, 3)
T.ABC = triangle(z.A, z.B, z.C)
z.M = T.ABC.bc.mid
L.AM = line(z.A, z.M)
z.Q = L.AM.mid }

\begin{tikzpicture}
\tkzGetNodes
\tkzDrawPolygon(A,B,C)
\tkzDrawLine[add = 0 and 1](A,Q)
\tkzDrawPoints(A,B,C,M,Q)
\tkzLabelPoints(A,B)
\tkzLabelPoints[above](C,M,Q)
\end{tikzpicture}

14.2.7. Triangle attributes: orientation

The attribute of a triangle indicates the orientation of its vertices. It is positive when the vertices are ordered
counter–clockwise, negative when they are ordered clockwise, and zero when the three points are collinear.
Geometrically, this value corresponds to the sign of the oriented area of the triangle.

orientation = direct

𝐴 𝐵

𝐶

\directlua{
init_elements()
z.A = point(0, 0)
z.B = point(2, 0)
z.C = point(1, 1)
T.ABC = triangle(z.A, z.B, z.C)
tex.print("orientation =\\ ", T.ABC.orientation)}

\begin{center}
\begin{tikzpicture}[scale = 3]

\tkzGetNodes
\tkzDrawPolygon(A,B,C)
\tkzDrawPoints(A,B,C)
\tkzLabelPoints(A,B)
\tkzLabelPoints[above](C)

\end{tikzpicture}
\end{center}

14.2.8. Triangle attributes: cross

In tkz-elements, the operator ^ denotes the two–dimensional cross product of vectors. For three points 𝐴, 𝐵,
and 𝐶, the expression
(𝐵−𝐴) ^ (𝐶 −𝐴)
returns a scalar value. Its sign indicates the relative orientation of the vectors ⃗⃗⃗⃗⃗⃗⃗𝐴𝐵 and ⃗⃗⃗⃗⃗⃗⃗𝐴𝐶: a positive value
corresponds to a counter–clockwise rotation, a negative value to a clockwise rotation, and a zero value indicates
collinearity.

tkz-elements AlterMundus



14. Class triangle 135

cross = -2

𝐴 𝐶

𝐵

\directlua{
init_elements()
z.A = point(0, 0)
z.B = point(1, 1)
z.C = point(2, 0)
T.ABC = triangle(z.A, z.B, z.C)
local cross = (z.B - z.A) ^ (z.C - z.A)
tex.print("cross =\\ ", cross)}

\begin{center}
\begin{tikzpicture}[scale = 3]

\tkzGetNodes
\tkzDrawPolygon(A,B,C)
\tkzDrawPoints(A,B,C)
\tkzLabelPoints(A,C)
\tkzLabelPoints[above](B)

\end{tikzpicture}
\end{center}
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14.3. Methods of the class triangle

Table 11: triangle methods.
Constructor Reference

new(a, b ,c) Notea; [14.1; 14.3.1]

Methods Returning a Boolean

in_out(pt) [14.4.2]
on_triangle(pt) [14.4.3]
check_equilateral() [14.4.4]
check_acutangle() [14.4.5]

Methods Returning a String

position(pt, EPS) [14.4.1]

Methods Returning a Real Number

barycentric_coordinates(pt) [14.5.1]
trilinear_coordinates(pt) [14.5.2]
get_angle(arg) [14.5.3]
trilinear_to_d 14.5.4

Methods Returning a Point

get(arg) [14.3.2]
point(r) [14.6.1]
random(<'inside'>) [14.6.2]
barycentric(ka,kb,kc) Note b

base(u,v) [14.6.5]
trilinear(u,v,w) [14.6.4]
lemoine_point() [12.9.2]
symmedian_point() [14.9.9]
lemoine_point() [14.9.9]
bevan_point() [14.6.8; 14.8.12]
mittenpunkt_point() [14.6.12]
gergonne_point() [14.6.13]
nagel_point() [14.6.14]
feuerbach_point() [14.6.15]
spieker_center() [14.6.17]
projection(p) [14.6.10]
euler_points() [14.6.18]
nine_points() [14.6.19]
taylor_points() See [14.8.13]
parallelogram() [24.5.13]
kimberling(n) See [14.6.6]
isogonal(p) See [14.6.7]
macbeath_point()(p) See [14.6.26]
poncelet_point(p) See [14.6.27]
orthopole(L) See [14.6.28]
first_fermat_point() See [14.6.22]
second_fermat_point() See [14.6.23]
lamoen_points() See [14.8.15]
soddy_center() See [14.6.20]
conway_points() See [14.6.21]
kenmotu_point() See [14.6.24]
orthic_axis_points() See [ 14.9.2; 14.7.7]
isodynamic_points() [14.6.29]
apollonius_point() [14.6.31]

a triangle(pt, pt, pt) (short form, recommended)
b The function barycenter is used to obtain the barycentre for any number of points
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Table 12: triangle methods.
Methods Reference

Methods Returning a Line

altitude(arg) Note a [14.7.2]
bisector(arg) Note b; [14.7.3]
bisector_ext(arg) [14.7.4]
mediator(arg) [14.7.5]
symmedian_line(arg) [14.7.1 ; 14.9.9 ; 12.9.2]
euler_line() Note c ; [14.7.8]
antiparallel(pt,n) [14.7.6;14.6.16]
steiner_line(pt) [14.7.9]
simson_line(pt) [14.7.13]
lemoine_axis() [14.7.10]
brocard_axis() [14.7.12]
fermat_axis()
orthic_axis() See [14.7.7]

a z.Ha = L.AHa.pb recovers the common point of the opposite side and altitude. The method orthic is usefull. If you don’t need to use
the triangle object several times, you can obtain a bisector or a altitude with the function tkz.altitude(z.A, z.B, z.C) ; [ 42]

b _, z.b = L.Bb:get() recovers the common point of the opposite side and bisector. If you don’t need to use the triangle object several
times, you can obtain a bisector with the function tkz.bisector(z.A, z.B, z.C) [42]

c N center of nine points circle, G centroid, H orthocenter , O circum center
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Methods Comments

Methods Returning a Circle

euler_circle() Note a [14.8.1]
circum_circle() [14.8.2]
in_circle() [14.8.3]
ex_circle(n) [14.8.4]
first_lemoine_circle() [14.8.10]
second_lemoine_circle() 14.6.16]
spieker_circle() [14.8.5]
bevan_circle() [14.8.12]
cevian_circle() [14.8.6 ; 14.9.8]
symmedial_circle() [14.8.7; 14.9.9]
pedal_circle() [14.8.9]
conway_circle() [14.8.8]
taylor_circle() [14.8.13]
kenmotu_circle() [14.8.18]
c_c(pt) [14.8.19]
thebault(pt) [14.8.19]
mixtilinear_incircle(arg) [14.8.20]
three_tangent_circles [14.8.21]
adams_circle() [14.8.14]
lamoen_circle() See [14.8.15]
soddy_circle() See [14.8.16]
three_apollonius_circles() See [14.8.22]
apollonius_circle(side, EPS) See [14.8.23]
feuerbach_apollonius_k181(side, EPS) See [14.8.24]
feuerbach_apollonius(side, EPS) See [14.8.25]

Methods Returning a Triangle

orthic() [14.7.2]
medial() [14.9.1 ; 14.9.9]
incentral() [14.9.3]
excentral() [14.9.4; 14.9.7]
extouch() [14.9.6]
intouch() [14.9.5; 14.6.13]
contact() contact = intouch ; [ 14.6.13]
tangential() [14.9.14]
anti() Anticomplementary [14.9.15]
cevian(pt) [14.9.8]
pedal(pt) [14.8.9]
symmedial() [14.9.9]
euler() [14.9.10; 14.6.18]
lemoine() [14.9.16]
macbeath() See [14.9.17]
circumcevian() See [ 14.9.13]

Methods Returning a Conic
kiepert_parabola() [14.10.1]
kiepert_hyperbola() [14.10.2]
steiner_inellipse() [ 14.10.4]
steiner_circumellipse() [ 14.10.4]
euler_ellipse() [14.10.3]
lemoine_ellipse() [14.10.5]
brocard_inellipse() [14.10.6]
macbeath_inellipse() [14.10.7]
mandart_ellipse() [14.10.8]
orthic_inellipse() [14.10.9]
reflection() [See 14.9.12; 14.7.13; 14.8.17]

Methods Returning a Square
square_inscribed() [ex.(14.11.1]

a The midpoint of each side of the triangle, the foot of each altitude, the midpoint of the line segment from each vertex of the triangle to
the orthocenter.

tkz-elements AlterMundus



14. Class triangle 139

14.3.1. Method new(pt, pt, pt)

This method creates a triangle object from three given points, which will serve as its vertices.

It is widely used and appears in most examples. The syntax is:

T.ABC = triangle(z.A, z.B, z.C)

The resulting object includes many precomputed attributes such as:

– T.ABC.A, T.ABC.B, T.ABC.C — the vertices,

– T.a, T.b, T.ABC.c — the side lengths,

– T.alpha, T.beta, T.gamma — the angles,

– T.area, T.perimeter,

– as well as key points like the centroid, incenter, orthocenter, circumcenter, etc.

These are available as attributes, not as methods.

z.A = point(1, 0)
z.B = point(6, 2)
z.C = point(2, 5)
T.ABC = triangle(z.A, z.B, z.c)

14.3.2. Method get(<i>)

This method performs the inverse of triangle creation: it returns the points that define the triangle object.

From the last version, the method also accepts an optional argument i to retrieve a specific point:

– T.ABC:get() returns all three vertices in order: pa, pb, pc;

– T.ABC:get(1) returns only the first point (pa),

– T.ABC:get(2) returns the second point (pb),

– T.ABC:get(3) returns the third point (pc).

Each of these points is also accessible directly as an attribute:

T.ABC.pa, T.ABC.pb, T.ABC.pc

For example:

T.ABC:get(2) is equivalent to T.ABC.pb

This method belongs to a general mechanism shared by all geometric objects. Its goal is to return the minimal
data required to reconstruct the object.

𝐴

𝐶′

𝐴′ ∶ (1.0;3.0)

𝐶

𝐵′

𝐵
\directlua{
z.A = point(1, 0)
z.B = point(2, 2)
z.C = point(0, 1)
T.ABC = triangle(z.A, z.B, z.C)
T.med = T.ABC:anticomplementary()
z.Ap, z.Bp, z.Cp = T.med:get()
xa,ya = z.Ap:get()}
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14.4. Returns a boolean value

14.4.1. Method position(pt[, EPS])

This method classifies the position of a point pt with respect to the triangle.

Return values:

– "IN" — the point lies strictly inside the triangle;

– "ON" — the point lies on one of its sides;

– "OUT" — the point lies strictly outside.

An optional tolerance parameter EPS may be provided. If omitted, the global tolerance tkz.epsilon is used.

The classification is based on barycentric coordinates and is numerically robust.

This method provides a unified and explicit classification model, consistent with other geometric objects such
as line:position() and circle:position().

14.4.2. Method in_out(pt); Deprecated

This method is kept for backward compatibility.
It returns a boolean:

– true if the point lies inside the triangle or on its boundary;

– false if the point lies strictly outside.

Internally, this method relies on triangle:position(pt) and returns:

position(pt) = "OUT"

For new developments, the use of triangle:position(pt) is recommended.

14.4.3. Method on_triangle(pt); Deprecated

This method is kept for backward compatibility.

Returns:

– "inside" if pt lies strictly inside the triangle;

– "on_edge" if pt lies on one of the sides of the triangle;

– "outside" otherwise.

14.4.4. Method check_equilateral()

This method checks whether the triangle is equilateral, i.e., whether its three sides are of equal length within a
numerical tolerance.

It returns a boolean:

– true if the triangle is equilateral,

– false otherwise.

This check takes into account floating-point rounding and uses an internal tolerance parameter.

if T.ABC:check_equilateral() then
-- do something

end
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14.4.5. Method check_acutangle()

Boolean. This method tests whether the triangle is acutangle, i.e., if all three of its interior angles are strictly
less than 90∘.

An acutangle triangle is a triangle where:

𝛼 < 90∘, 𝛽 < 90∘, 𝛾 < 90∘

if T.ABC:check_acutangle() then
-- do something

end

14.5. Returns a real number

14.5.1. Method barycentric_coordinates(pt)

This method returns the normalized barycentric coordinates of a point relative to the reference triangle.

x, y, z = T: barycentric_coordinates(z.P)

The result is a triple x, y, z such that:
𝑥+𝑦+𝑧 = 1

If the point lies on a side or at a vertex, one or more coordinates will be zero accordingly. This method is
especially useful for checking point location, computing weighted centers, or constructing affine invariants.

𝐴 𝐵

𝐶

𝐺 ∶ (0.3333 ∶ 0.3333 ∶ 0.3333)

\directlua{
init_elements()
z.A = point(0, 0)
z.B = point(3, 0)
z.C = point(1, 2)
T.ABC = triangle(z.A, z.B, z.C)
z.G = T.ABC.centroid
xg, yg, zg = T.ABC: barycentric_coordinates(z.G)}

14.5.2. Method trilinear_coordinates(pt)

This method returns the trilinear coordinates of a point relative to the reference triangle.

Trilinear coordinates represent a point 𝑃 by its (signed) distances to the sides of the triangle. The triple x, y,
z corresponds to the directed distances from 𝑃 to the sides 𝐵𝐶, 𝐴𝐶, and 𝐴𝐵, respectively.

x, y, z = T.ABC:trilinear_coordinates(z.P)

Unlike barycentric coordinates, trilinear coordinates are homogeneous, i.e., they are defined up to a nonzero
scalar multiple:

𝑃 = 𝑥 ∶ 𝑦 ∶ 𝑧

14.5.3. Method get_angle(arg)

This method returns one of the three internal angles of the triangle.

The argument arg identifies the vertex at which the angle is measured. It can be specified in several equivalent
ways:

– by a cyclic index 0, 1, or 2,

– by a symbolic identifier (pa, pb, pc),
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– or directly by passing one of the triangle’s vertices as a point.

The vertices of the triangle are assumed to be ordered in direct (counter-clockwise) orientation as (𝐴,𝐵,𝐶).
Accordingly, the returned angle is determined as follows:

– arg = 0 or arg = pa: returns the angle at vertex 𝐴,

– arg = 1 or arg = pb: returns the angle at vertex 𝐵,

– arg = 2 or arg = pc: returns the angle at vertex 𝐶.

This method should not be confused with the function get_angle(pta, ptb, ptc), which computes the angle
formed by three arbitrary points, independently of any triangle object.

𝐴 𝐵

𝐶 +

45.0

\directlua{
z.A = point: new(0, 0)
z.B = point: new(4, 0)
z.C = point: new(2, 2)
T.ABC = triangle(z.A, z.B, z.C)
tkzAngleA = math.deg(T.ABC:get_angle(z.A))
z.O = T.ABC.circumcenter
C.OB = circle(z.O,z.B)
z.T = C.OB:point(.2)}

\begin{center}
\begin{tikzpicture}
\tkzGetNodes
\tkzDrawCircle(O,A)
\tkzDrawArc[red,->,ultra thick](O,B)(T)
\tkzDrawLines[red](A,B A,C)
\tkzDrawPoints(A,B,C)
\tkzLabelPoints(A,B)
\tkzLabelPoints(C)
\tkzLabelPoint[right=6pt,red,thick](T){$\mathbf{+}$}
\tkzMarkAngle[->,red](B,A,C)
\tkzLabelAngle(B,A,C){\tkzUseLua{tkzAngleA}}
\end{tikzpicture}

\end{center}

14.5.4. Method trilinear_to_d

Purpose: Convert a trilinear triple (𝑥 ∶ 𝑦 ∶ 𝑧) into a proportional triple (𝑝,𝑞,𝑟) related to the perpendicular
distances from a point to the triangle sides 𝐵𝐶,𝐶𝐴,𝐴𝐵. The method uses the current triangle side lengths
𝑎,𝑏,𝑐 and area Δ.

Interest: Trilinear coordinates are a natural system for locating points defined by geometric relations involv-
ing the sides of a triangle (e.g., incenters, excenters, Gergonne or Nagel points, centers of conics, etc.). Many
formulas in triangle geometry are expressed in trilinears, but practical geometric constructions often require
distances to the sides or to be converted into Cartesian coordinates. The method trilinear_to_d provides this
essential step:

(𝑥 ∶ 𝑦 ∶ 𝑧) ⟶ (𝑝,𝑞,𝑟) ∝ (𝑥
𝑎
, 𝑦
𝑏
, 𝑧
𝑐
)

This allows the use of trilinear relations directly within the computational framework of tkz-elements.

Syntax: p, q, r = T:trilinear_to_d(x, y, z)

Arguments:

– x, y, z — real numbers representing the trilinear coordinates.

Returns:

– p, q, r — real numbers proportional to the distances to the triangle sides.
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Definition:
𝑝 =Δ 𝑥

𝑎
, 𝑞 =Δ 𝑦

𝑏
, 𝑟 =Δ 𝑧

𝑐
,

where Δ is the area of the triangle computed with Heron’s formula.
Remarks:

– The returned values (𝑝,𝑞,𝑟) are proportional to the distances, not normalized.

– For actual distances (𝑑𝑎,𝑑𝑏,𝑑𝑐) one can use:

𝜆 = 2Δ
𝑎𝑥+𝑏𝑦+𝑐𝑧

, 𝑑𝑎 =𝜆𝑥, 𝑑𝑏 =𝜆𝑦, 𝑑𝑐 =𝜆𝑧.

14.6. Returns a point

14.6.1. Method point(r)

This method is common to most classes. It places a point along the contour of the triangle, proportionally to
its perimeter.
The parameter r must be a real number between 0 and 1, representing the fraction of the total perimeter to
travel starting from the first vertex (pa) along the oriented boundary.

– If r = 0 or r = 1, the method returns the first point (pa).

– If r = 0.5, the resulting point lies halfway along the triangle’s perimeter.

Example: The point 𝑀 divides the perimeter into two equal arcs:
z.M = T.ABC:point(0.5)

𝐴

𝐵

𝐶

𝑀

\directlua{
z.A = point(1, 0)
z.B = point(6, 2)
z.C = point(2, 5)
T.ABC = triangle(z.A, z.B, z.C)
z.M = T.ABC:point(.5)}

\begin{tikzpicture}
\tkzGetNodes
\tkzDrawPolygon(A,B,C)
\tkzDrawPoints(A,B,C,M)
\tkzLabelPoints(A,B,C,M)
\tkzDrawSegments[red,thick](A,B B,M)

\end{tikzpicture}

14.6.2. Method random(<'inside'>)

This method determines either a random point on one of the sides, or an interior point using the optional
inside argument.

𝑃𝑄

\directlua{
init_elements()
z.A = point(0, 0)
z.B = point(5, 0)
z.C = point(1, 4)
T.ABC = triangle(z.A, z.B, z.C)
z.Q = T.ABC:random("inside")
z.P = T.ABC:random() }

\begin{tikzpicture}
\tkzGetNodes
\tkzDrawPolygons[red](A,B,C)
\tkzDrawPoints(A,B,C,P,Q)
\tkzLabelPoints(P,Q)
\end{tikzpicture}
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14.6.3. Method barycentric(ka, kb, kc)

This method, also available under the alias barycenter, returns the point with barycentric coordinates (𝑘𝑎 ∶
𝑘𝑏 ∶ 𝑘𝑐) with respect to the triangle.

These coordinates are homogeneous, meaning only the ratio between the weights matters. The computed point
𝑃 satisfies:

𝑃 = 𝑘𝑎 ⋅𝐴+𝑘𝑏 ⋅𝐵+𝑘𝑐 ⋅𝐶
𝑘𝑎+𝑘𝑏+𝑘𝑐

where 𝐴, 𝐵, and 𝐶 are the triangle’s vertices.

This method is widely used internally, notably by the kimberling() method to define classical triangle centers
such as the centroid, incenter, symmedian point, etc.

𝐴

𝐵
𝑃

𝐶 \directlua{
z.A = point(1, 0)
z.B = point(6, 2)
z.C = point(2, 5)
T.ABC = triangle(z.A, z.B, z.C)
z.P = T.ABC:barycentric(1, 1, 1)}

\begin{tikzpicture}[scale=.75]
\tkzGetNodes
\tkzDrawPolygon(A,B,C)
\tkzDrawPoint(P)
\tkzLabelPoints(A,B,P)
\tkzLabelPoints[above](C)
\end{tikzpicture}

14.6.4. Method trilinear(x, y, z)

This method determines a point 𝑃 given its trilinear coordinates relative to a reference triangle 𝐴𝐵𝐶.

Trilinear coordinates are defined as an ordered triple (𝑥,𝑦,𝑧) that is proportional to the directed distances from
the point 𝑃 to the sides 𝐵𝐶, 𝐴𝐶, and 𝐴𝐵 respectively.

These coordinates are homogeneous, meaning they are only defined up to a nonzero scalar multiple. The point
𝑃 lies at the intersection of the cevians corresponding to these ratios.

Trilinear coordinates were introduced by Plücker in 1835 and remain a fundamental tool in triangle geometry.

Weisstein, Eric W. ”Trilinear Coordinates.” MathWorld.

𝐴 𝐵

𝐺′

𝐶

𝐺

\directlua{
init_elements()
z.A = point(0, 0)
z.B = point(4, 0)
z.C = point(4, 3)
T.ABC = triangle(z.A, z.B, z.C)
a = T.ABC.a
b = T.ABC.b
c = T.ABC.c
z.Gp = T.ABC:trilinear(b * c, a * c, a * b)
z.G = T.ABC:barycentric(1, 1, 1)}
\begin{center}

\begin{tikzpicture}
\tkzGetNodes
\tkzDrawPolygon(A,B,C)
\tkzDrawPoints(A,B,C,G',G)
\tkzLabelPoints(A,B,G')
\tkzLabelPoints[above](C,G)
\end{tikzpicture}

\end{center}
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14.6.5. Method base

This method computes a point defined as a linear combination of two sides of the triangle, based at the first
vertex.

Given a triangle 𝐴𝐵𝐶, the method defines a point 𝐷 by:

⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗𝐴𝐷= 𝜆 ⋅ ⃗⃗⃗⃗⃗⃗⃗𝐴𝐵+𝜇 ⋅ ⃗⃗⃗⃗⃗⃗⃗𝐴𝐶

where 𝜆 and 𝜇 are real coefficients passed as arguments.

Example: If both coefficients are 1, then:
⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗𝐴𝐷= ⃗⃗⃗⃗⃗⃗⃗𝐴𝐵+ ⃗⃗⃗⃗⃗⃗⃗𝐴𝐶

This yields a point located ”beyond” 𝐴 in the direction formed by adding the two side vectors.

z.D = T.ABC:base(1,1)

𝐴

𝐵

𝐶

𝐷
𝐸

\directlua{
init_elements()
z.A = point(1, 1)
z.B = point(8, 0)
z.C = point(0, 5)
z.X = point(2, 2)
T.ABC = triangle(z.A, z.B, z.C)
z.D = T.ABC:base(1, 1)
z.E = T.ABC:base(.5, 1)}
\begin{center}
\begin{tikzpicture}[scale=.75]

\tkzGetNodes
\tkzDrawPolygons(A,B,D,C A,B,E,C)
\tkzDrawPoints(A,B,C,D,E)
\tkzLabelPoints(A,B)
\tkzLabelPoints[above](C,D,E)

\end{tikzpicture}
\end{center}

14.6.6. Method kimberling(n)

This method returns the triangle center corresponding to the Kimberling number n.

The enumeration of triangle centers was established by American mathematician Clark Kimberling in his En-
cyclopedia of Triangle Centers, available online from the University of Evansville:

faculty.evansville.edu/ck6/encyclopedia/ETC.html

Each remarkable triangle center is assigned a unique index 𝑋(𝑛). For example, the centroid is 𝑋(2), and the
orthocenter is 𝑋(4).

Only a selection of centers is currently implemented in this method. The accessible Kimberling numbers are:

– 𝑋(1): incenter

– 𝑋(2): centroid

– 𝑋(3): circumcenter

– 𝑋(4): orthocenter

– 𝑋(5): nine-point center

– 𝑋(6): symmedian (Lemoine) point

– 𝑋(7): Gergonne point

– 𝑋(8): Nagel point

– 𝑋(9): Mittenpunkt

– 𝑋(10): Spieker center

– 𝑋(11): Feuerbach point

– 𝑋(13): First Fermat point

– 𝑋(14): Second Fermat point

– 𝑋(19): Clawson point
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– 𝑋(20): de Longchamps point

– 𝑋(55), 𝑋(56), 𝑋(110), 𝑋(111), 𝑋(115)

– 𝑋(175), 𝑋(176), 𝑋(213), 𝑋(371)

Example:

z.G = T.ABC:kimberling(2) –> the centroid 𝑋(2)

𝐴

𝐵 𝐶

𝐹

𝑂𝐻

\directlua{
init_elements()
z.B = point(0, 0)
z.C = point(4, 0)
z.A = point(1, 3.2)
T.ABC = triangle(z.A, z.B, z.C)
z.H = T.ABC:kimberling(4)
z.O = T.ABC:kimberling(3)
L.euler = line(z.O, z.H)
z.F = T.ABC:kimberling(110)
kiepert = conic(z.F,L.euler,1)
curve = kiepert:points(-4, 4, 50)
z.ea, z.eb = L.euler:get() }
\begin{center}
\begin{tikzpicture}[scale=.8]

\tkzGetNodes
\tkzDrawLines[cyan,

add= .5 and .5](A,C A,B A,C)
\tkzDrawPolygon[cyan](A,B,C)
\tkzDrawCoordinates[smooth,red](curve)
\tkzDrawLines[red,add= .5 and .5](ea,eb)
\tkzDrawPoints(A,B,C,F,O,H)
\tkzLabelPoints(A,B,C,F,O,H)

\end{tikzpicture}
\end{center}

14.6.7. Method isogonal(pt)

This method returns the isogonal conjugate of a point pt with respect to a triangle 𝐴𝐵𝐶.

The isogonal conjugate 𝑌 of a point 𝑋 is defined as the common point of the three lines obtained by reflecting
the lines 𝐴𝑋, 𝐵𝑋, and 𝐶𝑋 across the respective internal angle bisectors at 𝐴, 𝐵, and 𝐶.

An alternative but equivalent construction — and the one used in this method — consists in:

– reflecting point 𝑋 across each side of the triangle,

– constructing the circle through the three reflected points,

– returning the center of this circle.

Validation: Using this method, you can verify that the isogonal conjugate of the orthocenter is indeed the
circumcenter of triangle 𝐴𝐵𝐶.

Geometric remark: If a point 𝑀 lies on the circumcircle, then the isogonal conjugates of the points on the
tangent line at 𝑀 trace a parabola that passes through the three vertices of the triangle. This elegant but subtle
configuration highlights the dynamic complexity of isogonal mappings:

– the vertices of the triangle are the conjugates of the tangent’s intersection points with the triangle’s sides;

– points near 𝑀 on the tangent map to conjugates that tend toward infinity.
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In the accompanying example, 𝑥 is the intersection of the tangent with side 𝐴𝐶, and 𝑥′ is a nearby point chosen
to observe the behavior of its isogonal conjugate 𝑦′.

𝑎 𝑏

𝑀

𝐻

𝑂

𝑐

𝑥

𝑦

𝑥′

𝑦′

\directlua{
z.a = point(0, 0)
z.b = point(4, 0)
z.c = point(1, 4)
T.abc = triangle(z.a, z.b, z.c)
z.H = T.abc.orthocenter
z.O = T.abc:isogonal(z.H)
z.I = T.abc.incenter
C.Oa = circle(z.O, z.a)
z.M = C.Oa:point(0.45)
Ta = C.Oa:tangent_at(z.M)
z.u = Ta.pb
z.v = Ta.pa
z.x = intersection(Ta,T.abc.ca)
z.y = T.abc:isogonal(z.x)
L.Mx = line(z.M,z.x)
z.xp = L.Mx:point(0.9)
z.yp = T.abc:isogonal(z.xp)
PA.points = path()
for t = 1.5, 50, 1/10 do
local x = Ta:point(t)
local y = T.abc:isogonal(x)
PA.points:add_point(y)

end
for t = -55, 0.2, 1/10 do
local x = Ta:point(t)
local y = T.abc:isogonal(x)
PA.points:add_point(y) end}

\begin{center}
\begin{tikzpicture}[scale=.75]

\tkzGetNodes
\tkzDrawPolygon(a,b,c)
\tkzDrawCoordinates[smooth,red,thick](PA.points)
\tkzDrawLines[add =.1 and .1](x,v a,b b,c a,x)
\tkzDrawPoints(a,b,c,H,M,x,y,H,O,x',y')
\tkzLabelPoints(a,b,M,H,O)
\tkzLabelPoints[above](c,x,y,x',y')
\tkzDrawCircles(O,a)

\end{tikzpicture}
\end{center}

14.6.8. Method bevan_point()

The Bevan point of a triangle is the circumcenter of the excentral triangle.
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𝐴

𝐵

𝑐

𝐽𝑐

𝐶

𝐽𝑎

𝐽𝑏

\directlua{
init_elements()
z.A = point(1, 1)
z.B = point(6, 0)
z.C = point(2, 4)
T.ABC = triangle(z.A, z.B, z.C)
T.exc = T.ABC:excentral()
z.J_a, z.J_b, z.J_c = T.exc:get()
z.c = T.ABC:bevan_point()}
\begin{tikzpicture}[scale=.45]
\tkzGetNodes
\tkzDrawPolygons(A,B,C)
\tkzDrawCircle(c,J_a)
\tkzDrawPoints(A,B,C,c,J_a,J_b,J_c)
\tkzLabelPoints(A,B,c,J_c)
\tkzLabelPoints[above](C,J_a)
\tkzLabelPoints[left](J_b)

\end{tikzpicture}

14.6.9. Method excenter(pt)

Since the argument is one of the triangle’s vertices, this method returns the center of the corresponding exin-
scribed circle.

14.6.10. Method projection(pt)

This method returns the three orthogonal projections of a point onto the sides of the triangle.

Given a triangle 𝐴𝐵𝐶 and a point 𝑃, the method computes the feet of the perpendiculars dropped from 𝑃 to
each of the sides [𝐵𝐶], [𝐴𝐶], and [𝐴𝐵].

The result consists of three points, which can be retrieved as follows:

z.D, z.E, z.F = T.ABC:projection(z.P)

where:

– z.D is the projection onto 𝐵𝐶,

– z.E onto 𝐴𝐶,

– z.F onto 𝐴𝐵.

This method is useful, for example, in constructing the pedal triangle of a point with respect to a triangle.
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𝐽

𝑐

𝐼

𝑋

𝐵𝑍

𝑎

𝐴

𝑌

𝑏

𝐶 \directlua{
z.A = point(0, 0)
z.B = point(5, 0)
z.C = point(-.4 , 4)
T.ABC = triangle(z.A, z.B, z.C)
z.I = T.ABC.incenter
z.a,
z.b,
z.c = T.ABC:projection(z.I)
z.J = T.ABC:excenter(z.C)
z.X,
z.Y,
z.Z = T.ABC:projection(z.J)}
\begin{center}

\begin{tikzpicture}[scale=.75]
\tkzGetNodes
\tkzDrawPolygon(A,B,C)
\tkzDrawArc[blue](J,X)(Y)
\tkzDrawCircle[red](I,a)
\tkzDrawSegments[blue](J,X J,Y J,Z C,Y C,X)
\tkzDrawSegments[red](I,a I,b I,c)
\tkzDrawSegments[cyan,dashed](C,J)
\tkzDrawPoints(A,B,C,I,a,b,c,J,X,Y,Z)
\tkzLabelPoints(J,c)
\tkzLabelPoints[right](I,X)
\tkzLabelPoints[above](B,Z,a)
\tkzLabelPoints[left](A,Y,b,C)
\tkzMarkRightAngles[fill=blue!20,

opacity=.4](A,Z,J A,Y,J J,X,B)
\tkzMarkRightAngles[fill=red!20,

opacity=.4](A,b,I A,c,I I,a,B)
\end{tikzpicture}
\end{center}

14.6.11. Method parallelogram()

Complete a triangle as a parallelogram. If z.D = T.ABC:parallelogram() then 𝐴𝐵𝐶𝐷 is a parallelogram.

14.6.12. Method mittenpunkt

This method returns the Mittenpunkt of the triangle, also known as the middlespoint.

The Mittenpunkt is defined as the symmedian point of the excentral triangle, i.e., the point of intersection of
the lines joining each excenter to the midpoint of the corresponding side of the original triangle.

It is a notable triangle center, designated as 𝑋(9) in Kimberling’s classification.

Weisstein, Eric W. ”Mittenpunkt.” MathWorld.
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𝐼𝑏

𝐼𝑎

𝐼𝑐

𝐵𝐴

𝐶

𝑀𝑖

\directlua{
init_elements()
z.A = point(0, 0)
z.B = point(6, 0)
z.C = point(4, 6)
T.ABC = triangle(z.A, z.B, z.C)
z.Ma,
z.Mb,
z.Mc = T.ABC:medial():get()
z.Ia, z.Ib, z.Ic = T.ABC:excentral():get()
z.Mi = T.ABC:mittenpunkt_point()
T.int = T.ABC:extouch()
z.Ta, z.Tb,
z.Tc = T.int:get()}

14.6.13. Method gergonne_point()

This method returns the Gergonne point of the triangle, denoted 𝑋(7) in Kimberling’s classification.

The Gergonne point is the common point of the lines connecting each vertex of the triangle to the point of
contact of the incircle with the opposite side.

In this example, the method is often combined with:

– intouch – to get the contact triangle (also called the intouch triangle),

– contact – to retrieve the three contact points individually.

These contact points are the feet of the perpendiculars from the incenter to each side, i.e., the tangency points
of the incircle with the triangle’s sides.

Weisstein, Eric W. ”Gergonne Point.” MathWorld.

𝑎

𝑏

𝑡𝑐

𝑐

𝑡𝑎

𝑡𝑏

\directlua{
init_elements()
z.a = point(1,0)
z.b = point(6,2)
z.c = point(2,5)
T.abc = triangle(z.a, z.b, z.c)
z.g = T.abc:gergonne_point()
z.i = T.abc.incenter
z.ta, z.tb, z.tc = T.abc:intouch():get()}

14.6.14. Method Nagel_point

Let 𝐸𝑎 be the point at which the 𝐽𝑎-excircle meets the side (𝐵𝐶) of a triangle 𝐴𝐵𝐶, and define 𝐸𝑏 and 𝐸𝑐
similarly. Then the lines 𝐴,𝐸𝑎, 𝐵,𝐸𝑏 and 𝐶,𝐸𝑐 concur in the Nagel point 𝑁𝑎.

𝐴 𝐵

𝑁𝑎

𝐸𝑐

𝐽𝑎

𝐽𝑏

𝐽𝑐

𝐸𝑎
𝐸𝑏

𝐶 \directlua{
init_elements()
z.A = point(0, 0)
z.B = point(3.6, 0)
z.C = point(2.8, 4)
T.ABC = triangle(z.A, z.B, z.C)
z.Na = T.ABC:nagel_point()
z.J_a, z.J_b,
z.J_c = T.ABC:excentral():get()
z.E_a, z.E_b,
z.E_c = T.ABC:extouch():get()}
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14.6.15. Method feuerbach_point()

This method returns the Feuerbach point of the triangle, designated as 𝑋(11) in Kimberling’s classification.

The Feuerbach point 𝐹 is the unique point where the triangle’s incircle and nine-point circle are tangent to
each other.

In addition, the three excircles of the triangle are each tangent to the nine-point circle. These three points of
tangency define what is called the Feuerbach triangle, whose vertices are often denoted 𝐹𝑎, 𝐹𝑏, and 𝐹𝑐.

This construction reveals a remarkable configuration of internal and external circle tangency with the nine-point
circle.

Weisstein, Eric W. ”Feuerbach Point.” MathWorld.

𝐼
𝑁

𝐴 𝐵

𝐹𝑎

𝐹𝑐

𝐹

𝐼
𝐹𝑏

𝐶 \directlua{
z.A = point(0, 0)
z.B = point(6, 0)
z.C = point(0.8, 4)
T.ABC = triangle(z.A, z.B, z.C)
z.N = T.ABC.eulercenter
z.Fa, z.Fb,
z.Fc = T.ABC:feuerbach():get()
z.F = T.ABC:feuerbach_point()
z.Ja, z.Jb,
z.Jc = T.ABC:excentral():get()
z.I = T.ABC.incenter}

14.6.16. Method symmedian_point()

This method returns the symmedian point 𝐾 of the triangle, also known as the Lemoine point (in English
and French literature) or the Grebe point (in German).

The symmedian point is the point of concurrence of the triangle’s three symmedians, which are the isogonal
conjugates of the medians. In other words, 𝐾 is the isogonal conjugate of the centroid 𝐺.

You can also use the aliases lemoine_point or grebe_point to call this method.

A beautiful geometric property of the Lemoine point is the following: The antiparallels to the triangle’s sides
passing through the symmedian point intersect the sides in six points that all lie on a same circle — this
is known as the first Lemoine circle.

Weisstein, Eric W. ”Symmedian Point.” MathWorld.

𝑎 𝑏

𝐿

𝑐 \directlua{
init_elements()
z.a = point(0, 0)
z.b = point(5, 0)
z.c = point(1, 4)
T.abc = triangle(z.a, z.b, z.c)
z.L = T.abc:lemoine_point()
L.anti = T.abc:antiparallel(z.L, 0)
z.x_0, z.x_1 =L.anti:get()
L.anti = T.abc:antiparallel(z.L, 1)
z.y_0, z.y_1 = L.anti:get()
L.anti = T.abc:antiparallel(z.L, 2)
z.z_0, z.z_1 = L.anti:get()}
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14.6.17. Method spieker_center

This method returns the Spieker center of the triangle, denoted 𝑋(10) in Kimberling’s classification.

The Spieker center 𝑆𝑝 is the incenter of the medial triangle of the reference triangle 𝐴𝐵𝐶. It is also the
center of the Spieker circle, which is the incircle of that medial triangle.

An important property is that the Spieker center is also the center of the radical circle of the triangle’s three
excircles. This makes it a key point in both classical triangle geometry and circle configurations.

Weisstein, Eric W. ”Spieker Circle.” MathWorld.

𝐴

𝐵

𝑆

𝑚𝑐

𝐶

𝑤
𝑚𝑎

𝑚𝑏

\directlua{
z.A = point (0, 0)
z.B = point (5, -0.5)
z.C = point (2.2, 5)
T.ABC = triangle(z.A, z.B, z.C)
z.S = T.ABC:spieker_center()
T.m = T.ABC:medial()
z.ma, z.mb, z.mc = T.m:get()
z.w = T.m.ab:projection(z.S)}
\begin{tikzpicture}
\tkzGetNodes
\tkzDrawPolygons(A,B,C ma,mb,mc)
\tkzDrawCircles[red](S,w)
\tkzDrawPoints(A,B,C,S,ma,mb,mc)
\tkzLabelPoints(A,B,S,mc)
\tkzLabelPoints[above](C,w)
\tkzLabelPoints[right](ma)
\tkzLabelPoints[left](mb)
\end{tikzpicture}

14.6.18. Method euler_points

The points 𝑎, 𝑏 and 𝑐 are the Euler points. They are the midpoints of the segments 𝐴𝐻, 𝐵𝐻 and 𝐶𝐻.

𝐴 𝐵

𝑎 𝑏

𝐻

𝑐

𝐶
\directlua{
init_elements()
z.A = point(0, 0)
z.B = point(5, 0)
z.C = point(1, 4)
T.ABC = triangle(z.A, z.B, z.C)
z.N = T.ABC.eulercenter
z.a,
z.b,
z.c = T.ABC:euler():get()
z.H = T.ABC.orthocenter
T.orthic = T.ABC:orthic()
z.Ha,
z.Hb,
z.Hc = T.orthic:get()}

14.6.19. Method nine_points

This method returns the nine classical points that lie on the Euler circle (also called the nine-point circle) of
a triangle.

The returned points, in order, are:

– the three midpoints of the sides of the triangle,

– the three feet of the altitudes,
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– the three Euler points (i.e., the midpoints between each vertex and the orthocenter).

These nine points lie on the same circle, whose center is the midpoint of the segment joining the orthocenter to
the circumcenter.

In the next example, we also compute the centroid (center of gravity) in two different ways:

– using the trilinear method with coordinates (1 ∶ 1 ∶ 1),

– using the barycentric method with weights (1,1,1).

𝑒1𝑒2

𝑒3

𝑒4

𝑒5

𝑒6

𝑒7 𝑒8

𝑒9

\directlua{
init_elements()
z.A = point(0 ,0)
z.B = point(5, 0)
z.C = point(1, 4)
T.ABC = triangle(z.A, z.B, z.C)
z.N = T.ABC.eulercenter
z.e1,
z.e2,
z.e3,
z.e4,
z.e5,
z.e6,
z.e7,
z.e8,
z.e9 = T.ABC:nine_points()}

14.6.20. Method soddy_center

This method returns the Soddy center of the triangle.

Given three mutually tangent circles (typically the triangle’s three inner Apollonius circles centered at each
vertex), there exist exactly two non-intersecting circles that are tangent to all three. These are called the inner
and outer Soddy circles, and their respective centers are called the inner and outer Soddy centers.

By default, the method returns the inner Soddy center. A keyword option such as "outer" may be used to
retrieve the second one, if implemented.

See section 14.8.1 for details about the associated Soddy circles.

𝐴

𝐵

𝑆

𝐶

\directlua{
init_elements()
z.A = point(0, 0)
z.B = point(4, 0.5)
z.C = point(1, 3)
T.ABC = triangle(z.A, z.B, z.C)
z.S = T.ABC:soddy_center()}

14.6.21. Method conway_points()

This method returns the six points defined in Conway’s circle theorem.

The Conway circle theorem states the following:

If the sides meeting at each vertex of a triangle are extended by the length of the opposite side, the
six endpoints of the resulting three segments all lie on a common circle. This circle is called the
Conway circle of the triangle, and its center is the incenter of the triangle.

tkz-elements AlterMundus



14. Class triangle 154

The six returned points can then be used to draw this Conway circle and to verify its geometric properties.

See the corresponding figure in section 14.8.8 for a complete illustration.

Wikipedia – Conway circle theorem

C.conway = T.ABC:conway_circle()
z.w,z.t = C.conway:get() % % z.w = T.ABC : conway_center ()
z.t1, z.t2, z.t3, z.t4, z.t5, z.t6 = T.ABC: onway_points()

14.6.22. Method first_fermat_point()

In a given triangle 𝐴𝐵𝐶 with all angles less than 120 degrees (2pi/3), the first Fermat point is the point which
minimizes the sum of distances from A, B, and C.

𝐵

𝐹1

𝐶

𝐸

𝐺

𝐴

𝐹

\directlua{
z.A = point(1, 2)
z.B = point(5, 1)
z.C = point(2.5, 4)
T.ABC = triangle(z.A, z.B, z.C)
z.F1 = T.ABC:first_fermat_point()
_,_,z.E = T.ABC.bc:equilateral("swap"):get()
_,_,z.F = T.ABC.ca:equilateral("swap"):get()
_,_,z.G = T.ABC.ab:equilateral("swap"):get()}
\begin{tikzpicture}
\tkzGetNodes
\tkzDrawPolygon(A,B,C)
\tkzDrawSegments[dashed](B,E E,C C,F F,A)
\tkzDrawSegments[dashed](A,G G,B)
\tkzDrawSegments[dashed,red](A,E B,F C,G)
\tkzDrawPoints(A,B,C,F1,E,F,G)
\tkzLabelPoints[right](B,F1)
\tkzLabelPoints[above](C,E,G)
\tkzLabelPoints(A,F)
\end{tikzpicture}

14.6.23. Method second_fermat_point()

See [14.7.11] ]

14.6.24. Method kenmotu_point()

This method returns the Kenmotu point of the triangle, also known as the congruent squares point. It is
listed as 𝑋(371) in Kimberling’s classification.

The Kenmotu point is the unique point where three equal squares, each inscribed in the triangle and touching
two sides, intersect at a single common point. Each square is constructed so that it fits snugly between two
adjacent triangle sides.

This triangle center is remarkable for its connection to equal-area geometric constructions and is defined purely
by square congruence and tangency conditions.

See the illustration in section 14.8.18 for a visual representation of the configuration.

Weisstein, Eric W. ”Kenmotu Point.” MathWorld
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14.6.25. Method adams_points()

Given a triangle 𝐴𝐵𝐶, construct the contact triangle 𝑇𝐴𝑇𝐵𝑇𝐶. Now extend lines parallel to the sides of the
contact triangle from the Gergonne point. These intersect the triangle 𝐴𝐵𝐶 in the six points 𝑃,𝑄,𝑅,𝑆,𝑇, and
𝑈. C. Adams proved in 1843 that these points are concyclic in a circle now known as the Adams’ circle.

Weisstein, Eric W. ”Adams’ Circle.” From MathWorld–A Wolfram Web Resource.

14.6.26. Method macbeath_point

The MacBeath point is the center of the cercle kimberling(264).

𝐵 𝐶

𝑀𝐵

𝐴 \directlua{
init_elements()
z.A = point(.5, 3)
z.B = point(0, 0)
z.C = point(5, 0)
T.ABC = triangle(z.A, z.B, z.C)
z.MB = T.ABC:macbeath_point()
z.Xa, z.Xb,
z.Xc = T.ABC:macbeath():get()}
\begin{tikzpicture}
\tkzGetNodes
\tkzDrawPolygons(A,B,C Xa,Xb,Xc)
\tkzDrawSegments(A,Xa B,Xb C,Xc)
\tkzDrawPoints(A,B,C,MB,Xa,Xb,Xc)
\tkzLabelPoints(B,C,MB)
\tkzLabelPoints[above](A)
\end{tikzpicture}

14.6.27. Method poncelet_point(p)

If the three vertices and the 𝑝 point do not form a orthocentric system et no three of them are collinear. The
nine-point circles of the four triangles obtained with three of the four points have one thing in common, called
Poncelet point.

𝐴

𝐵

𝐶

𝑋

𝑃

\directlua{
init_elements()
z.A = point(1, 1)
z.B = point(6, 0)
z.C = point(0, 5)
z.X = point(2, 2)
T.ABC = triangle(z.A, z.B, z.C)
z.P = T.ABC:poncelet_point(z.X)
z.I = T.ABC.eulercenter
z.Ma, z.Mb, z.Mc = T.ABC:medial():get()
T.ABX = triangle(z.A, z.B, z.X)
z.I1 = T.ABX.eulercenter}
\begin{center}
\begin{tikzpicture}

\tkzGetNodes
\tkzDrawPolygons(A,B,C)
\tkzDrawPoints(A,B,C,X,P)
\tkzDrawCircles[red](I,Ma I1,Mc)
\tkzLabelPoints(A,B)
\tkzLabelPoints[above](C,X,P)

\end{tikzpicture}
\end{center}

14.6.28. Method orthopole

For the definition and some properties, please refer to:

Weisstein, Eric W. ”Orthopole.” From MathWorld–A Wolfram Web Resource.
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See the following example for the link between orthopole and Simson line: (An example x can be found in the
document Euclidean Geometry presented in altermundus.fr.)

𝐴 𝐵

𝐻
𝑁

𝐶

𝑃

\directlua{
init_elements()
z.A = point(0, 0)
z.B = point(5, 0)
z.C = point(1, 4)
T.ABC = triangle(z.A, z.B, z.C)
z.N = T.ABC.eulercenter
z.H = T.ABC.orthocenter
L.NH = line(z.N, z.H)
z.P = T.ABC:orthopole(L.NH)
}
\begin{center}
\begin{tikzpicture}
\tkzGetNodes
\tkzDrawPolygons[cyan](A,B,C)
\tkzDrawLine[purple,add = 2 and 2](N,H)
\tkzDrawPoints(A,B,C,N,H,P)
\tkzLabelPoints(A,B,H,N)
\tkzLabelPoints[above](C,P)

\end{tikzpicture}
\end{center}

14.6.29. Method isodynamic_points()

This method computes the two isodynamic points of a non-degenerate triangle.

Geometric background: Given a triangle 𝐴𝐵𝐶, consider the three Apollonius circles associated with its sides:

𝒜𝑎, 𝒜𝑏, 𝒜𝑐,

each defined as the locus of points 𝑀 satisfying a ratio of distances corresponding to the opposite sides.
A classical and fundamental property states that:

The three Apollonius circles intersect in exactly two points. These intersections are the first
and second isodynamic points of the triangle.

The first isodynamic point is symmetric to the second by reflection in the circumcenter. Both points are isogonal
conjugates of the Fermat points.

Description: The method isodynamic_points() returns the two common intersection points of the Applo-
nius circles.

Return values:

– S1 — the first isodynamic point,

– S2 — the second isodynamic point.

Example:

S1, S2 = T.ABC:isodynamic_points()

Each point can then be used like any other point object in subsequent constructions.

Application:
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𝐴 𝐵 𝑤1

𝑤2

𝑤3𝐶

𝑆

𝑆′

\directlua{%
z.A = point (0, 0)
z.B = point (5, 0)
z.C = point (3.5, 2)
T.ABC = triangle (z.A, z.B, z.C)
C.ab, C.bc,
C.ca = T.ABC:three_apollonius_circles()
z.w1, z.t1 = C.ab:get()
z.w2, z.t2 = C.bc:get()
z.w3, z.t3 = C.ca:get()
z.S, z.Sp = T.ABC:isodynamic_points()
}
\begin{center}
\begin{tikzpicture}[scale=.5]
\tkzGetNodes
\tkzDrawLines[add = 1.5 and 1.5,

dashed](A,B B,C C,A)
\tkzDrawPolygons(A,B,C)
\tkzDrawCircle[purple](O,A)
\tkzDrawCircles[cyan](w1,t1 w2,t2 w3,t3)
\tkzDrawLines[purple](w1,w2)
\tkzDrawPoints(A,B,C,w1,w2,w3,S,S')
\tkzLabelPoints(A,B,w1,w2,w3)
\tkzLabelPoints[above](C,S,S')

\end{tikzpicture}
\end{center}

14.6.30. Method apollonius_points(side)

This method returns the two Apollonius division points associated with a specified side of the triangle.

Description. Given a triangle 𝐴𝐵𝐶 and a chosen side:

– "ab" — side 𝐴𝐵, ratio defined by the opposite side 𝑐 =𝐴𝐵,

– "bc" — side 𝐵𝐶, ratio defined by the opposite side 𝑎 =𝐵𝐶,
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– "ca" — side 𝐶𝐴, ratio defined by the opposite side 𝑏 =𝐶𝐴,

the method returns the two points that divide the chosen side internally and externally according to the ratio
of the adjacent sides.

Return values: Two points:

– P_int — internal division point on the chosen side,

– P_ext — external division point on the chosen side.

Example:

Pin, Pex = T.ABC:apollonius_points("ab")

The returned objects are standard point instances usable in further constructions.
Application: See [14.8.23]

14.6.31. Method apollonius_point()

This method should not be confused with the previous one.
Consider the excircles 𝐽𝐴, 𝐽𝐵, and 𝐽𝐶 of a triangle, and the external Apollonius circle tangent externally to all
three. Denote the contact point by 𝑥𝑎, 𝑥𝑏 and 𝑥𝑐, etc. Then the lines 𝐴𝑥𝑎, 𝐵𝑥𝑏, and 𝐶𝑥𝑐 concur in a point
known as the Apollonius point. This point is Kimberling center 𝑋(181) (Kimberling 1998, p. 102).

(Reference: Weisstein, Eric W. ”Apollonius Point.” MathWorld)

14.7. Returns a line

14.7.1. Method symmedian_line(n)

This method returns one of the symmedians of the triangle.

The lines 𝐴𝐿𝑎, 𝐵𝐿𝑏, and 𝐶𝐿𝑐, which are the isogonal conjugates of the medians 𝐴𝑀𝑎, 𝐵𝑀𝑏, and 𝐶𝑀𝑐, are called
the triangle’s symmedians. These lines concur at a point 𝐿, known as the Lemoine point or symmedian
point. It is the isogonal conjugate of the centroid 𝐺.

The triangle 𝐿𝑎𝐿𝑏𝐿𝑐, formed by the intersections of the symmedians with the sides of the triangle 𝐴𝐵𝐶, is called
the symmedial triangle. The circle circumscribed about this triangle is known as the symmedial circle.

To obtain:

– all three symmedians, use the method symmedian();

– the point of concurrency, use symmedian_point() or lemoine_point();

– only one symmedian, use symmedian_line(n) with 𝑛 = 0, 1, or 2, corresponding respectively to the
vertices 𝐴, 𝐵, or 𝐶.

In the following example, the point 𝐿 is the Lemoine point, and the triangle 𝐿𝑎𝐿𝑏𝐿𝑐 is the symmedial triangle.

Weisstein, Eric W. ”Symmedian Point.” MathWorld.
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𝐶

𝐿𝑎

𝐼𝑎

𝑀𝑎

𝐿𝑏
𝐼𝑏

𝑀𝑏

𝐴

𝐵

𝐿

𝐿𝑐

𝐼

𝐼𝑐 𝑀𝑐

𝐺

\directlua{
init_elements()
z.A = point(0, 0)
z.B = point(6, 0)
z.C = point(2.4, 1.8)
T.ABC = triangle(z.A, z.B, z.C)
z.L = T.ABC:lemoine_point()
T.SY = T.ABC:symmedian()
T.med = T.ABC:medial()
z.Ka, z.Kb, z.Kc = T.SY:get()
z.Ma, z.Mb, z.Mc = T.med:get()
L.Kb = T.ABC:symmedian_line(1)
_, z.Kb = L.Kb:get()
z.G = T.ABC.centroid
z.Ia, z.Ib,
z.Ic = T.ABC:incentral():get()
z.I = T.ABC.incenter}

14.7.2. Method altitude(arg)

This method returns one of the altitudes of a triangle.

There are multiple ways to access altitudes:

– orthic returns the orthic triangle, whose vertices are the feet of the three altitudes.

– altitude returns a single altitude line, based on an optional argument.

The optional argument arg determines from which vertex the altitude is dropped. It may be:

– nil or 0 (default): returns the altitude from vertex 𝐴;

– 1: returns the altitude from vertex 𝐵;

– 2: returns the altitude from vertex 𝐶;

– a point equal to z.A, z.B, or z.C (the vertex of origin).

This interface matches that of other methods such as bisector and symmedian_line.

𝐴 𝐵

𝐻

𝐻𝑐

𝐻𝑎

𝐶 \directlua{
init_elements()
z.A = point(0, 0)
z.B = point(5, 0)
z.C = point(2, 4)
T.ABC = triangle(z.A, z.B, z.C)
z.H = T.ABC.orthocenter
L.HA = T.ABC:altitude()
L.HC = T.ABC:altitude(z.C)
z.Hc = L.HC.pb
z.Ha = L.HA.pb
z.a, z.b,
z.c = T.ABC:orthic():get()}

14.7.3. Method bisector(arg)

This method returns one of the three internal angle bisectors of a triangle.

In many cases, it may be sufficient to compute the incenter and connect it to the triangle’s vertices, since all
bisectors pass through the incenter. For example:
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z.I = T.ABC.incenter

However, the method bisector(arg) explicitly computes the intersection of the bisector with the opposite side.
This is useful for constructing the incentral triangle or other derived figures.

If all three bisectors are needed, use the method incentral, which returns the incentral triangle, whose
vertices are the feet of the internal bisectors.

The optional argument arg controls from which vertex the bisector originates. It can be:

– nil or 0 (default): bisector from vertex 𝐴;

– 1: bisector from vertex 𝐵;

– 2: bisector from vertex 𝐶;

– a point equal to one of the triangle’s vertices, such as z.A, z.B, or z.C.

This behavior is consistent with other methods like altitude, symmedian_line, and mediator.

𝐴

𝐵
𝐼

𝐶

𝐹

𝐸

\directlua{
init_elements()
z.A = point(0, 0)
z.B = point(3, 2)
z.C = point(2, 5)
T.ABC = triangle(z.A, z.B, z.C)
L.AE = T.ABC:bisector()
z.E = L.AE.pb
z.F = T.ABC:bisector(z.B).pb
z.a, z.b, z.c = T.ABC:incentral():get()
z.I = T.ABC.incenter}

14.7.4. Method bisector_ext(arg)

This method returns an external angle bisector of the triangle, from a specified vertex.

Its interface is identical to bisector, accepting either an index n or a vertex point (z.A, z.B, z.C). See Sec-
tion 14.7.3 for usage details.

14.7.5. Method mediator(...)

This method returns the perpendicular bisector of one side of a triangle.
Syntax:

L = triangle:mediator()
L = triangle:mediator(n) n = 0, 1 or 2
L = triangle:mediator(pt) pt vertex of the triangle

Arguments:

– If no argument or n = 0 is given, the bisector of side AB is returned.

– If n = 1, the bisector of side BC is returned.

– If n = 2, the bisector of side CA is returned.

– If a point (pa, pb, pc) is passed, the method returns the bisector of the side opposite to that vertex.
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Return value:
Returns a line object representing the perpendicular bisector of the selected side.
Examples.

T = triangle(z.A, z.B, z.C)
L1 = T:mediator() -- bisector of AB
L2 = T:mediator(1) -- bisector of BC
L3 = T:mediator(z.C) -- bisector of AB (since C is opposite AB)

\directlua{
z.A = point(0, 0)
z.B = point(3, 2)
z.C = point(2, 5)
T.ABC = triangle(z.A, z.B, z.C)
L.MA = T.ABC:mediator(z.A)
L.MB = T.ABC:mediator(z.B)
L.MC = T.ABC:mediator(z.C)
z.ma1, z.ma2 = L.MA:get()
z.mb1, z.mb2 = L.MB:get()
z.mc1, z.mc2 = L.MC:get()}

\begin{center}
\begin{tikzpicture}
\tkzGetNodes
\tkzDrawPolygon(A,B,C)
\tkzDrawLines[red,
add = .25 and .25](ma1,ma2 mb1,mb2

mc1,mc2)
\tkzDrawPoints(A,B,C,ma1,ma2)

\end{tikzpicture}
\end{center}

See also. mediator, altitude, bisector

14.7.6. Method antiparallel(arg)

This method returns an antiparallel line associated with a triangle and one of its angles.
Two lines, such as (𝑃𝑄) and (𝐵𝐶), are said to be antiparallel with respect to an angle (e.g., ∠𝐴) if they form
equal angles (in opposite directions) with the bisector of that angle.
Useful properties of antiparallel lines:

– If (𝑃𝑄) and (𝐵𝐶) are antiparallel with respect to ∠𝐴, then the four points 𝑃, 𝑄, 𝐵, and 𝐶 are concyclic.

– Antiparallelism is symmetric: if (𝑃𝑄) is antiparallel to (𝐵𝐶), then (𝐵𝐶) is antiparallel to (𝑃𝑄).

This method takes two arguments:

– pt (mandatory): a point through which the antiparallel line will pass;

– arg (optional): specifies the vertex of the triangle that defines the reference angle.

The second argument arg can be:

– nil or 0 (default): antiparallel to 𝐵𝐶 w.r.t. angle b𝐴;

– 1: antiparallel to 𝐴𝐶 w.r.t. angle b𝐵;

– 2: antiparallel to 𝐴𝐵 w.r.t. angle b𝐶;

– a point equal to one of the triangle’s vertices: z.A, z.B, or z.C.

This method is used, for example, in the construction of the symmedian point (see Section 14.6.16).
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𝐴

𝐵

𝑃

𝑄𝑀

𝐶

\directlua{
init_elements()
z.B = point(0, 0)
z.C = point(5, 0)
z.A = point(1, 4)
T.ABC = triangle(z.A, z.B, z.C)
z.M = point(2, 2)
L.anti = T.ABC:antiparallel(z.M, z.A)
z.P, z.Q = L.anti:get()
T.PQ = triangle(z.P, z.Q, z.B)
z.W = T.PQ.circumcenter}

14.7.7. Method orthic_axis() and orthic_axis_points()

Let 𝐻𝐴𝐻𝐵𝐻𝐶 be the orthic triangle of a reference triangle 𝐴𝐵𝐶 (i.e., the triangle formed by the feet of the
altitudes from each vertex).

Each side of triangle 𝐴𝐵𝐶 intersects each side of triangle 𝐻𝐴𝐻𝐵𝐻𝐶, and the three points of intersection all lie
on a common straight line. This line is known as the orthic axis of the triangle.

The method orthic_axis() returns this line as an object of class line. The method orthic_axis_points()
returns the three intersection points between corresponding sides of the reference triangle and the orthic triangle.
These are the points 𝑂𝐴, 𝑂𝐵, and 𝑂𝐶 aligned on the orthic axis.

This remarkable line is a classical geometric construction, often overlooked despite its elegance.

𝐻

𝐵 𝐶𝐻𝐴

𝐴

𝐻𝐵

𝐻𝐶

𝑄𝐴

𝑄𝐵

𝑄𝐶

\directlua{
z.B = point(0, 0)
z.C = point(5, 0)
z.A = point(.6, 3)
T.ABC = triangle(z.A, z.B, z.C)
z.H = T.ABC.orthocenter
z.H_A, z.H_B,
z.H_C = T.ABC:orthic():get()
L.orthic = T.ABC:orthic_axis()
z.Q_A, z.Q_B,
z.Q_C = T.ABC:orthic_axis_points()}

\begin{center}
\begin{tikzpicture}
\tkzGetNodes
\tkzDrawPolygons[cyan](A,B,C)
\tkzDrawLines[red](Q_C,Q_B)
\tkzDrawSegments(A,Q_C B,Q_A A,H_A)
\tkzDrawSegments(B,H_B C,H_C C,Q_B)
\tkzDrawSegments[dashed](H_B,Q_C H_B,Q_A)
\tkzDrawSegments[dashed](H_A,Q_B)
\tkzDrawPoints(A,B,C,H_A,H_B,H_C)
\tkzDrawPoints(H,Q_A,Q_B,Q_C)
\tkzLabelPoints(H)
\tkzLabelPoints(B,C,H_A)
\tkzLabelPoints[above right](A,H_B)
\tkzLabelPoints[left](H_C,Q_A,Q_B,Q_C)
\end{tikzpicture}
\end{center}

14.7.8. Methods euler_line() and orthic_axis()

These two methods return two fundamental lines associated with triangle geometry: the Euler line and the
orthic axis.

Euler line — The line on which lie several remarkable triangle centers:
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– the orthocenter 𝐻,

– the centroid 𝐺,

– the circumcenter 𝑂,

– the nine-point center 𝑁,

– and many others.

Orthic axis — Let ℎ𝑎, ℎ𝑏, and ℎ𝑐 be the vertices of the orthic triangle of triangle 𝐴𝐵𝐶. Each side of triangle
𝐴𝐵𝐶 intersects each side of the orthic triangle. The three points of intersection lie on a line called the orthic
axis.

– This line is perpendicular to the Euler line.

– It is returned by the method orthic_axis() as a line object.

– To obtain the three intersection points explicitly, use orthic_axis_points().
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euler_line

orthic_axis

\directlua{
init_elements()
z.B = point(0 ,0)
z.C = point(5, 0)
z.A = point(.6, 3)
T.ABC = triangle(z.A, z.B, z.C)
z.N = T.ABC.eulercenter
z.H = T.ABC.orthocenter
z.O = T.ABC.circumcenter
z.G = T.ABC.centroid
z.ha, z.hb, z.hc = T.ABC:orthic():get()
L.orthic = T.ABC:orthic_axis()
z.Qa, z.Qb,
z.Qc = T.ABC:orthic_axis_points()
L.euler = T.ABC:euler_line()
z.ea, z.eb = L.euler:get()
z.K = L.orthic:projection(z.N)}

14.7.9. Method steiner_line(pt)

Let 𝐴𝐵𝐶 be a triangle with orthocenter 𝐻, and let 𝑀 be a point on the circumcircle of triangle 𝐴𝐵𝐶.

Define the following:

– 𝐻𝐴, 𝐻𝐵, and 𝐻𝐶 are the reflections of point 𝑀 across the sides 𝐵𝐶, 𝐴𝐶, and 𝐴𝐵 respectively.

– The points 𝐻𝐴, 𝐻𝐵, 𝐻𝐶, and the orthocenter 𝐻 are collinear.

The line passing through these four points is called the Steiner line of point 𝑀 with respect to triangle 𝐴𝐵𝐶.

The method steiner_line(pt) returns this line as a line object, provided that the point pt lies on the
circumcircle of the triangle. The Steiner line always passes through the orthocenter 𝐻.

A necessary and sufficient condition for the points 𝐻𝐴, 𝐻𝐵, and 𝐻𝐶 to be collinear (and for the Steiner line to
exist) is that 𝑀 lies on the circumcircle of triangle 𝐴𝐵𝐶.
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𝐵 𝐶
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𝑄
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\directlua{
z.B = point(0, 0)
z.C = point(4, 0)
z.A = point(1, 4)
T.ABC = triangle(z.A, z.B, z.C)
C.ABC = T.ABC:circum_circle()
z.O = T.ABC.circumcenter
z.H = T.ABC.orthocenter
z.M = C.ABC:point(.65)
z.H_P = T.ABC.ab:reflection(z.M)
z.H_Q = T.ABC.bc:reflection(z.M)
z.H_R = T.ABC.ca:reflection(z.M)
L.steiner = T.ABC:steiner_line(z.M)
z.P = T.ABC.ab:projection(z.M)
z.Q = T.ABC.bc:projection(z.M)
z.R = T.ABC.ca:projection(z.M)}
\begin{center}
\begin{tikzpicture}
\tkzGetNodes
\tkzDrawLines[cyan,add= .25 and .25](A,C A,B B,C)
\tkzDrawLines[red,thick](H_P,H_Q)
\tkzDrawCircles(O,A)
\tkzDrawPoints(A,B,C,M,H_P,H_Q,H_R,O,H,P,Q,R)
\tkzLabelPoints(B,C,H_P,H_Q,H_R,R)
\tkzLabelPoints[above](O,H)
\tkzLabelPoints[above right](P,Q,A,M)
\tkzDrawSegments(M,H_P M,H_Q M,H_R)
\tkzMarkRightAngles(B,P,M M,R,A M,Q,B)
\end{tikzpicture}

\end{center}

14.7.10. Method lemoine_axis()

This method returns the Lemoine axis of the triangle.

The Lemoine axis is a classical and remarkable line associated with triangle geometry. It is defined in several
equivalent ways:

– It is the polar of the Lemoine point (or symmedian point) with respect to the circumcircle of the
triangle.
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– It passes through the points of intersection of the tangents to the circumcircle at each vertex and the
opposite sides. These tangents are antiparallel to the opposite sides.

– It also contains the centers of the three Apollonius circles corresponding to the ordered triplets:

(𝐴,𝐵, 𝐶𝐴
𝐶𝐵

), (𝐵,𝐶, 𝐴𝐵
𝐴𝐶

), (𝐶,𝐴, 𝐵𝐶
𝐵𝐴

)

The method lemoine_axis() returns the line as an object of type line.
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\directlua{
z.A = point(0, -2)
z.B = point(5, 2)
z.C = point(1, 1)
T.ABC = triangle(z.A, z.B, z.C)
z.L = T.ABC:lemoine_point()
z.O = T.ABC.circumcenter
L.L = T.ABC:lemoine_axis()
z.la,
z.lb = L.L:get()
L.B = T.ABC:brocard_axis()
z.ba,
z.bb = L.B:get()}

14.7.11. Method fermat_axis

The Fermat axis is the line connecting the first and second Fermat points.

𝐵

𝐹1

𝐹2

𝐿

𝐶

𝐴

\directlua{
z.A = point(1, 2)
z.B = point(5, 1)
z.C = point(2.5, 3)
T.ABC = triangle(z.A, z.B, z.C)
z.F1 = T.ABC:first_fermat_point()
z.F2 = T.ABC:second_fermat_point()
L.F = T.ABC:fermat_axis()
z.a, z.b = L.F:get()
z.L = T.ABC:lemoine_point()}

14.7.12. Method brocard_axis()

The Brocard axis is the straight line passing through the symmedian point 𝐾 and the circumcenter 𝑂 of
a triangle. The segment [𝐾𝑂] is referred to as the Brocard diameter (see Kimberling, 1998, p. 150).

This line has several remarkable properties:

– It is perpendicular to the Lemoine axis (see Section 14.7.10).

– It is the isogonal conjugate of the Kiepert hyperbola.

The method brocard_axis() returns this line as an object of type line.

Weisstein, Eric W. ”Brocard Axis.” MathWorld

14.7.13. Method simson_line(pt)

The Simson line of a point 𝑀 with respect to triangle 𝐴𝐵𝐶 is the line that passes through the feet of the
perpendiculars dropped from 𝑀 to the sides (or their extensions) of the triangle.
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Let 𝑃, 𝑄, and 𝑅 be the feet of the perpendiculars from 𝑀 to sides 𝐵𝐶, 𝐶𝐴, and 𝐴𝐵 respectively. If 𝑀 lies on
the circumcircle of triangle 𝐴𝐵𝐶, then the points 𝑃, 𝑄, and 𝑅 are collinear. The line through them is called
the Simson line of 𝑀.
The method simson_line(pt) returns this line (as a line object), assuming the point pt lies on the circumcircle
of the triangle.

Jackson, Frank and Weisstein, Eric W. ”Simson Line.” MathWorld

𝐵 𝐶
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𝐻
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𝑄

𝐴

𝑀

\directlua{
z.B = point(0, 0)
z.C = point(4, 0)
z.A = point(1, 4)
T.ABC = triangle(z.A, z.B, z.C)
C.ABC = T.ABC:circum_circle()
z.O = T.ABC.circumcenter
z.H = T.ABC.orthocenter
z.M = C.ABC:point(.65)
z.H_P = T.ABC.ab:reflection(z.M)
z.H_Q = T.ABC.bc:reflection(z.M)
z.H_R = T.ABC.ca:reflection(z.M)
L.steiner = T.ABC:steiner_line(z.M)
z.P = T.ABC.ab:projection(z.M)
z.Q = T.ABC.bc:projection(z.M)
z.R = T.ABC.ca:projection(z.M)
L.simson = T.ABC:simson_line(z.M)
z.sa, z.sb = L.simson:get()}
\begin{center}
\begin{tikzpicture}
\tkzGetNodes
\tkzDrawLines[cyan,add= .25 and .25](A,C A,B B,C)
\tkzDrawLines[red,thick](H_P,H_Q)
\tkzDrawLines[blue,thick](sa,sb)
\tkzDrawCircles(O,A)
\tkzDrawPoints(A,B,C,M,H_P,H_Q,H_R,O,H,P,Q,R)
\tkzLabelPoints(B,C,H_P,H_Q,H_R,R)
\tkzLabelPoints[above](O,H)
\tkzLabelPoints[above right](P,Q,A,M)
\tkzDrawSegments(M,H_P M,H_Q M,H_R)
\tkzMarkRightAngles(B,P,M M,R,A M,Q,B)
\end{tikzpicture}

\end{center}
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14.8. Returns a circle

14.8.1. Method euler_circle()

The nine-point circle, also called the Euler circle or Feuerbach circle, is a fundamental circle in triangle
geometry.

It passes through the following nine notable points of any triangle 𝐴𝐵𝐶:

– The feet 𝐻𝐴, 𝐻𝐵, 𝐻𝐶 of the altitudes from each vertex to the opposite side;

– The midpoints 𝑀𝐴, 𝑀𝐵, 𝑀𝐶 of the sides of the triangle;

– The midpoints 𝐸𝐴, 𝐸𝐵, 𝐸𝐶 of the segments joining each vertex to the orthocenter 𝐻 (called the Euler
points).

This circle was described by Euler in 1765 and further studied by Feuerbach, who proved that it is tangent to
the triangle’s incircle and excircles.

There are two ways to define this circle in the package:

– By computing its center using the attribute T.eulercenter, then using a midpoint to define the radius;

– Or directly, using the method euler_circle(), which returns a circle object representing the nine-point
circle.

Weisstein, Eric W. ”Nine-Point Circle.” MathWorld
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\directlua{
init_elements()
z.A = point(0, 0)
z.B = point(5, 0)
z.C = point(1, 4)
T.ABC = triangle(z.A, z.B, z.C)
C.euler = T.ABC:euler_circle()
z.N, z.K = C.euler:get()}

\begin{center}
\begin{tikzpicture}
\tkzGetNodes
\tkzDrawPolygons[red](A,B,C)
\tkzDrawCircle(N,K)
\tkzDrawPoints(A,B,C,N,K)
\tkzLabelPoints(A,B,N)
\tkzLabelPoints[above](C,K)
\end{tikzpicture}

\end{center}

14.8.2. Method circum_circle()

The circumscribed circle (or circumcircle) of a triangle is the unique circle that passes through its three
vertices.

There are two ways to obtain it:

– If you only need the center, use the attribute T.circumcenter.

– If you need the entire circle object (center and a point on the circle), use the method circum_circle(),
which returns a circle.

This method is useful if the circle needs to be reused in further constructions, such as drawing or testing
tangency.
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𝐴 𝐵
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\directlua{
init_elements()

z.A = point(0, 0)
z.B = point(5, 0)
z.C = point(1, 4)
T.ABC = triangle(z.A, z.B, z.C)
C.circum = T.ABC:circum_circle()
z.O,
z.K = C.circum:get()}

\begin{center}
\begin{tikzpicture}
\tkzGetNodes
\tkzDrawPolygons[red](A,B,C)
\tkzDrawCircle(O,K)
\tkzDrawPoints(A,B,C,O,K)
\tkzLabelPoints(A,B,O)
\tkzLabelPoints[above](C,K)
\end{tikzpicture}
\end{center}

14.8.3. Method in_circle()

The incircle of a triangle is the unique circle that is tangent to all three sides of the triangle and lies entirely
within it. This circle is also known as the inscribed circle.

Its properties are as follows:

– The center 𝐼 of the incircle, called the incenter, is the point of intersection of the three internal angle
bisectors.

– The radius of the circle is called the inradius.

– The points of tangency 𝑀𝐴, 𝑀𝐵, and 𝑀𝐶 of the incircle with the triangle’s sides form the so-called contact
triangle.

Geometrically, the contact triangle can also be seen as the pedal triangle of the incenter (see Section 14.8.9)
or as the tangential triangle (see Section 14.9.1).

The method in_circle() returns a circle object representing the incircle.

Weisstein, Eric W. ”Incircle.” MathWorld
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\directlua{
init_elements()
z.A = point(0, 0)
z.B = point(5, 0)
z.C = point(1, 3)
T.ABC = triangle(z.A, z.B, z.C)
z.E = T.ABC:bisector().pb
z.F = T.ABC:bisector(1).pb
z.G = T.ABC:bisector(2).pb
C.IH = T.ABC:in_circle()
z.I, z.H = C.IH:get()}

\begin{tikzpicture}%
[new/.style ={color = orange },
one/.style = { new,/tkzmkangle/size=.5 },
two/.style = { new,/tkzmkangle/size=.6 },
l/.style = { /tkzmkangle/arc=l },
ll/.style = { /tkzmkangle/arc=ll },
lll/.style = { /tkzmkangle/arc=lll }]

\tkzGetNodes
\tkzDrawPolygon(A,B,C)
\tkzDrawSegments[new](A,E B,F C,G)
\tkzDrawSegments[dashed,add=0 and .5](I,H)
\tkzDrawPoints(A,B,C,E,F,G,I)
\tkzDrawCircle(I,H)
\tkzDrawPoints(I,A,B,C,H)
\begin{scope}[one]
\tkzMarkAngles[l](B,A,E)
\tkzMarkAngles[ll](C,B,F)
\tkzMarkAngles[lll](A,C,G)

\end{scope}
\begin{scope}[two]
\tkzMarkAngles[l](E,A,C)
\tkzMarkAngles[ll](F,B,A)
\tkzMarkAngles[lll](G,C,B)

\end{scope}
\tkzLabelPoints(A,B,I)
\tkzLabelPoints[above](C,H)
\end{tikzpicture}

14.8.4. Method ex_circle(arg)

An excircle (or escribed circle) of a triangle is a circle that lies outside the triangle and is tangent to one side
and to the extensions of the two others.

For each vertex of the triangle, there exists one such circle:

– The excircle opposite vertex 𝐴 is tangent to side 𝐵𝐶 and the extensions of sides 𝐴𝐵 and 𝐴𝐶;

– The corresponding excenter lies at the intersection of two external angle bisectors and one internal
bisector.

The method ex_circle(arg) returns the excircle associated with the first vertex of the list obtained by per-
forming a cyclic permutation of (𝐴,𝐵,𝐶) arg times.

– arg = 0 (or nil) corresponds to vertex 𝐴,

– arg = 1 corresponds to vertex 𝐵,

– arg = 2 corresponds to vertex 𝐶.

The argument arg may also be the vertex itself (e.g., z.A, z.B, or z.C).
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\directlua{
init_elements()
z.A = point(0, 0)
z.B = point(5, 0)
z.C = point(-.4, 4)
T.ABC = triangle(z.A, z.B, z.C)
z.I,_ = T.ABC:ex_circle():get()
z.J,_ = T.ABC:ex_circle(1):get()
z.K,_ = T.ABC:ex_circle(2):get()
z.Xk,
z.Yk,
z.Zk = T.ABC:projection(z.K)
z.Xi,
z.Yi,
z.Zi = T.ABC:projection(z.I)
z.Xj,
z.Yj,
z.Zj = T.ABC:projection(z.J)}

14.8.5. Method spieker_circle()

In triangle geometry, the Spieker circle is defined as the incircle of the medial triangle of a reference
triangle 𝐴𝐵𝐶.

Its center is known as the Spieker center, which is also the center of the radical circle of the three excircles
of triangle 𝐴𝐵𝐶.

To construct the Spieker circle:

– First form the medial triangle whose vertices are the midpoints of the sides of 𝐴𝐵𝐶;

– Then construct the incircle of this medial triangle.

The method spieker_circle() returns a circle object representing this circle.

Weisstein, Eric W. ”Spieker Circle.” MathWorld
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\directlua{
init_elements()
z.A = point(1, 1)
z.B = point(5, 1)
z.C = point(2.2, 4)
T.ABC = triangle(z.A, z.B, z.C)
C.first_lemoine = T.ABC:spieker_circle()
z.S, z.w = C.first_lemoine:get()
z.Ma, z.Mb, z.Mc = T.ABC:medial():get()
z.N = T.ABC:nagel_point()
z.Qa = tkz.midpoint(z.A, z.N)
z.Qb = tkz.midpoint(z.B, z.N)
z.Qc = tkz.midpoint(z.C, z.N)}

14.8.6. Method cevian_circle(pt)

See [14.9.8]
The Cevian circle of a point 𝑃 with respect to triangle 𝐴𝐵𝐶 is the circle passing through the three points
where the cevians 𝐴𝑃, 𝐵𝑃, and 𝐶𝑃 intersect the opposite sides (or their extensions). It is a special case of a
pedal circle and is closely related to triangle center constructions.
The method cevian_circle(pt) returns the circle passing through these three intersection points.
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\directlua{
init_elements()
z.A = point(0, 0)
z.B = point(5, 0)
z.C = point(2, 4)
T.ABC = triangle(z.A, z.B, z.C)
z.P = point(2.5, 1.5)
C.cev = T.ABC:cevian_circle(z.P)
z.w,z.t = C.cev:get()}

\begin{tikzpicture}
\tkzGetNodes
\tkzDrawPolygon(A,B,C)
\tkzDrawCircle(w,t)
\tkzDrawPoints(A,B,C,P)
\tkzLabelPoints(A,B,C,P)

\end{tikzpicture}

14.8.7. Method symmedial_circle()

The symmedial circle is the circumcircle of the symmedial triangle.
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\directlua{
init_elements()
z.A = point(0,0)
z.B = point(5,0)
z.C = point(2,4)
T.ABC = triangle(z.A,z.B,z.C)
C.sym = T.ABC:symmedial_circle()
z.O,z.T = C.sym:get()}

\begin{tikzpicture}
\tkzGetNodes
\tkzDrawPolygon(A,B,C)
\tkzDrawCircle(O,T)
\tkzDrawPoints(A,B,C,O,T)
\tkzLabelPoints(A,B,C,O,T)

\end{tikzpicture}

14.8.8. Methods conway_points() and conway_circle()

In plane geometry, Conway’s circle theorem states that when the sides meeting at each vertex of a triangle are
extended by the length of the opposite side, the six endpoints of the three resulting line segments lie on a circle
whose centre is the centre of incenter of the triangle.
The method conway_points() creates the six points as defined by Conway’s theorem and constructs the circle
that passes through them.
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\directlua{
init_elements()
z.A = point(0, 0)
z.C = point(5, 0)
z.B = point(1, 3)
T.ABC = triangle(z.A, z.B, z.C)
C.conway = T.ABC:conway_circle()
z.w, z.t = C.conway:get()
z.t1, z.t2, z.t3,
z.t4, z.t5,
z.t6= T.ABC:conway_points()}

\begin{tikzpicture}[ scale = .5]
\tkzGetNodes
\tkzDrawPolygon(A,B,C)
\tkzDrawCircles(w,t)
\tkzDrawPoints(t1,t2,t3,t4,t5,t6)
\tkzLabelPoints(t1,t2,t3,t4,t5,t6)
\tkzDrawSegments[dashed](t1,A t2,A t3,B)
\tkzDrawSegments[dashed](t4,B t5,C t6,C)

\tkzMarkSegments(B,C t1,A t2,A)
\tkzMarkSegments[mark=||](A,C t3,B t4,B)
\tkzMarkSegments[mark=|||](A,B t5,C t6,C)

\end{tikzpicture}

14.8.9. Methods pedal() and pedal_circle()

Given a point 𝑃, the pedal triangle of 𝑃 is the triangle whose polygon vertices are the feet of the perpendiculars
from 𝑃 to the side lines.
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\directlua{
init_elements()
z.A = point(0, 0)
z.B = point(5, 0)
z.C = point(1.5, 3)
z.O = point(2, 1)
T.ABC = triangle(z.A, z.B, z.C)
T.pedal = T.ABC:pedal(z.O)
z.E, z.F, z.G = T.pedal:get()
C.pedal = T.ABC:pedal_circle(z.O)
z.w = C.pedal.center
z.T = C.pedal.through}

14.8.10. Method first_lemoine_circle()

This method constructs the first Lemoine circle of a triangle.
Through the symmedian point 𝐿 (also called the Lemoine point) of triangle 𝐴𝐵𝐶, draw three lines parallel to
each side of the triangle:
The lines (𝑃𝐴𝑄𝐴) ∥ (𝐵𝐶), (𝑃𝐵𝑄𝐵) ∥ (𝐴𝐶), and (𝑃𝐶𝑄𝐶) ∥ (𝐴𝐵) pass through the Lemoine point 𝐿. These lines
intersect the sides of the triangle in six points that lie on a common circle: the first Lemoine circle.
Each of these lines intersects the triangle’s sides in two points. The six points thus obtained lie on a same
circle, known as the first Lemoine circle. Its center is 𝐿, and it is a special case of a circle associated with
symmedians.

Weisstein, Eric W. ”First Lemoine Circle.” From MathWorld—A Wolfram Web Resource.

tkz-elements AlterMundus

https://mathworld.wolfram.com/FirstLemoineCircle.html


14. Class triangle 173
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\directlua{
z.A = point(0, 0)
z.B = point(5, 1)
z.C = point(1, 4)
T.ABC = triangle(z.A, z.B, z.C)
z.L = T.ABC:lemoine_point()
C.flemoine = T.ABC:first_lemoine_circle()
z.w, z.t = C.flemoine:get()
z.Q_A, z.Q_B, z.Q_C,
z.P_A, z.P_B,
z.P_C = T.ABC:first_lemoine_points()}

14.8.11. Method second_lemoine_circle()

This method constructs the second Lemoine circle of a triangle.
Through the symmedian point 𝐿 of triangle 𝐴𝐵𝐶, draw lines parallel to the sides of the orthic triangle. These
lines intersect the sides of triangle 𝐴𝐵𝐶 in six points. All six points lie on the same circle, called the second
Lemoine circle, whose center is also the point 𝐿.

Weisstein, Eric W. ”Second Lemoine Circle.” From MathWorld—A Wolfram Web Resource.

𝐴

𝐵

𝐿

𝑄𝐵
𝑃𝐴

𝐻𝐶

𝐶

𝑄𝐶

𝑃𝐵

𝐻𝐴𝑃𝐶

𝑄𝐴

𝐻𝐵

\directlua{
init_elements()
z.A = point(0, 0)
z.B = point(5, 1)
z.C = point(1, 4)
T.ABC = triangle(z.A, z.B, z.C)
z.L = T.ABC:lemoine_point()
C.slemoine = T.ABC:second_lemoine_circle()
z.w, z.t = C.slemoine:get()
T.orthic = T.ABC:orthic()
z.H_A, z.H_B, z.H_C = T.orthic:get()
z.Q_A, z.Q_B, z.Q_C,
z.P_A, z.P_B, z.P_C = T.ABC:second_lemoine_points()}

14.8.12. Method bevan_circle()

This method constructs the Bevan circle, also known as the excentral circle.
The Bevan circle is the circumcircle of the excentral triangle of the reference triangle 𝐴𝐵𝐶, i.e., the circle
passing through the three excenters of 𝐴𝐵𝐶. Its center is known as the Bevan point, which is therefore the
circumcenter of the excentral triangle.

Weisstein, Eric W. ”Bevan Circle.” From MathWorld—A Wolfram Web Resource.
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𝐴
𝐵

𝑉

𝐶

\directlua{
init_elements()
z.A = point(1, 1)
z.B = point(6, 0)
z.C = point(2, 4)
T.ABC = triangle(z.A, z.B, z.C)
z.Ea,z.Eb,z.Ec = T.ABC:excentral():get()
C.bevan = T.ABC:bevan_circle()
z.V, z.t = C.bevan:get()}

\begin{center}
\begin{tikzpicture}[scale =.4]
\tkzGetNodes
\tkzDrawPolygons(A,B,C Ea,Eb,Ec)
\tkzDrawCircle(V,t)
\tkzDrawPoints(A,B,C,V,Ea,Eb,Ec)
\tkzLabelPoints(A,B,V)
\tkzLabelPoints[above](C)

\end{tikzpicture}
\end{center}

14.8.13. Method taylor_circle()

The six projections of the feet of the heights of a triangle onto the adjacent sides are cocylic.

𝐴 𝐵𝐹𝐸1 𝐷2

𝐹2

𝐸

𝐶
𝐷1 𝐸2

𝐷

𝐹1

\directlua{
init_elements()
z.A = point(0, 0)
z.B = point(6, 0)
z.C = point(2.8, 4)
T.ABC = triangle(z.A, z.B, z.C)
T.DEF = T.ABC:orthic()
z.D, z.E, z.F = T.DEF:get()
z.D_1,
z.D_2,
z.E_1,
z.E_2,
z.F_1,
z.F_2 = T.ABC:taylor_points()
C.taylor = T.ABC:taylor_circle()
z.w, z.t = C.taylor:get()}
\begin{center}

\begin{tikzpicture}[scale = 1.25]
\tkzGetNodes
\tkzDrawPolygons(A,B,C D,E,F)
\tkzDrawPoints(A,B,...,F)
\tkzDrawPoints(D_1,D_2,E_1,E_2,F_1,F_2)
\tkzDrawSegments[orange](D,D_1 D,D_2)
\tkzDrawSegments[purple](E,E_1 E,E_2)
\tkzDrawSegments[red](F,F_1 F,F_2)
\tkzDrawCircles[blue](w,t)
\tkzLabelPoints(A,B,F,E_1,D_2)
\tkzLabelPoints[above left](F_2,E,C,D_1)
\tkzLabelPoints[above right](E_2,D,F_1)

\end{tikzpicture}
\end{center}

14.8.14. Method adams_circle()

See [14.6.25]
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𝑡3 𝑡4𝐵 𝐶

𝐴

𝑡1

𝑡2

𝑡5

𝑡6

\directlua{
z.A = point(0.5, 4)
z.B = point(0, 0)
z.C = point(5, 0)
T.ABC = triangle(z.A, z.B, z.C)
C.a = T.ABC:adams_circle()
z.w, z.t = C.a:get()
z.t1, z.t2, z.t3,
z.t4, z.t5,
z.t6 = T.ABC:adams_points()}

\begin{center}
\begin{tikzpicture}[scale = .75]
\tkzGetNodes
\tkzDrawPolygon(A,B,C)
\tkzDrawCircles[blue](w,t)
\tkzDrawPoints(t1,t2,t3,t4,t5,t6)
\tkzLabelPoints(t3,t4)
\tkzLabelPoints(B,C)
\tkzLabelPoints[above](A)
\tkzLabelPoints[left](t1,t2)
\tkzLabelPoints[right](t5,t6)

\end{tikzpicture}
\end{center}

14.8.15. Method lamoen_circle

This method returns the six Lamoen points associated with a triangle.
By dividing a triangle using its three medians, six smaller triangles are formed. Remarkably, the circumcenters
of these six triangles are concyclic, meaning they lie on a common circle. This circle is known as the van
Lamoen circle.
The six circumcenters themselves are called the Lamoen points. See an example on the document Euclidean
Geometry presented in altermundus.fr.

𝐴

𝐵 𝐶

𝐺

\directlua{
init_elements()
z.A = point(1.2, 2)
z.B = point(0, 0)
z.C = point(4, 0)
T.ABC = triangle(z.A, z.B, z.C)
T.med = T.ABC:medial()
z.G = T.ABC.centroid
z.ma,z.mb,z.mc = T.med:get()
z.Oab, z.Oac,
z.Oba, z.Obc,
z.Oca, z.Ocb = T.ABC:lamoen_points()
C.lamoen = T.ABC:lamoen_circle()
z.w = C.lamoen.center}
\begin{center}
\begin{tikzpicture}[scale = 1.5]
\tkzGetNodes
\tkzDrawPolygon(A,B,C)
\tkzDrawPolygon[red](ma,mb,mc)
\tkzDrawPoints(A,B,C,ma,mb,mc,G)
\tkzDrawCircle[purple](w,Oab)
\tkzDrawCircles(Oab,A Oac,B)
\tkzDrawPoints[size=2,purple,
fill=white](Oab,Oac,Oba,Obc,Oca,Ocb)

\tkzLabelPoints(A,B,C,G)
\end{tikzpicture}
\end{center}
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14.8.16. Method soddy_circle()

𝐴
𝐵

𝐶

\directlua{
init_elements()
z.A = point(0, 0)
z.B = point(4, 0.5)
z.C = point(1, 3)
T.ABC = triangle(z.A, z.B, z.C)
local ra = (T.ABC.b + T.ABC.c -T.ABC.a)/2
local rb = (T.ABC.c + T.ABC.a -T.ABC.b)/2
local rc = (T.ABC.b + T.ABC.a -T.ABC.c)/2
C.a = circle(through(z.A, ra))
C.b = circle(through(z.B, rb))
C.c = circle(through(z.C, rc))
z.ta = C.a.through
z.tb = C.b.through
z.tc = C.c.through
C.i = T.ABC:soddy_circle()
z.w, z.t = C.i:get()
C.o = T.ABC:soddy_circle("outer")
z.wp,z.tp = C.o:get()}

\begin{tikzpicture}[scale=.75]
\tkzGetNodes
\tkzDrawPolygon(A,B,C)
\tkzDrawCircles(A,ta B,tb C,tc)
\tkzDrawCircles[red](w,t w',t')
\tkzDrawPoints(A,B,C)
\tkzLabelPoints(A,B,C)

\end{tikzpicture}

14.8.17. Method yiu_circles()

The Yiu 𝐴-circle of a reference triangle 𝐴𝐵𝐶 is the circle passing through vertex 𝐴 and the reflections of vertices
𝐵 and 𝐶 across the opposite sides 𝐴𝐶 and 𝐴𝐵, respectively.
The Yiu 𝐵- and 𝐶-circles are defined analogously. These three circles intersect at a unique point — their
common radical center. However, they do not admit a common radical circle.

Weisstein, Eric W. ”Yiu Circles.” From MathWorld—A Wolfram Web Resource.
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𝐵 𝐶

𝐴′

𝐶′

𝐴 𝐵′

𝑆

\directlua{
z.A = point(-.2, 2)
z.B = point(0, 0)
z.C = point(2, 0)
T.ABC = triangle(z.A,z.B,z.C)
z.Ap,
z.Bp,
z.Cp = T.ABC:reflection():get()
z.O_A, z.O_B, z.O_C = T.ABC:yiu_centers()
C.A,
C.B,
C.C = T.ABC:yiu_circles()
x,y = intersection(C.A,C.B)
if C.C:in_out(x) then z.S = x
else z.S = y end}

\begin{center}
\begin{tikzpicture}[scale=.8]

\tkzGetNodes
\tkzInit[xmin=-4,xmax=4,ymin=-4,ymax=4]
\tkzClip
\tkzDrawPolygon(A,B,C)
\tkzDrawCircles[purple](O_A,A O_B,B O_C,C)
\tkzDrawSegments[orange,

dashed](A,A' B,B' C,C')
\tkzDrawPoints(A,B,C,A',B',C',O_A,O_B,O_C,S)
\tkzLabelPoints(B,C,A',C')
\tkzLabelPoints[above](A,B',S)
\end{tikzpicture}

\end{center}

14.8.18. Method kenmotu_circle()

The Kenmotu circle is the circle passing through the six contact points of the three congruent squares con-
structed on the sides of a triangle. These squares are used in the construction of the Kenmotu point, also
known as the congruent squares point (see Kimberling center 𝑋(371)).
The Kenmotu circle contains all six points of tangency between the triangle sides and the inscribed squares.

Weisstein, Eric W. ”Kenmotu Circle.” From MathWorld—A Wolfram Web Resource.
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𝐵 𝐶

𝐴

𝐾

\directlua{
init_elements()
z.A = point(1.6, 4.5)
z.B = point(0, 0)
z.C = point(5, 0)
T.ABC = triangle(z.A, z.B, z.C)
local ken_circle = T.ABC:kenmotu_circle()
z.K, z.T = ken_circle.center, ken_circle.through
z.p1,z.p2,z.p3,z.p4,z.p5,z.p6 = T.ABC:kenmotu_points()
z.p7 = z.p1 + z.p6 - z.K
z.p8 = z.p2 + z.p3 - z.K
z.p9 = z.p4 + z.p5 - z.K}

\begin{center}
\begin{tikzpicture}[scale = 1]
\tkzGetNodes
\tkzDrawCircles(K,T)
\tkzFillPolygon[opacity=.4,red!40](K,p1,p7,p6)
\tkzFillPolygon[opacity=.4,blue!40](K,p2,p8,p3)
\tkzFillPolygon[opacity=.4,orange!40](K,p4,p9,p5)
\tkzDrawPolygons(A,B,C)
\tkzDrawPolygons(K,p1,p7,p6 K,p2,p8,p3 K,p4,p9,p5)
\tkzDrawPolygons(A,B,C)
\tkzDrawPoints(A,B,C,K)
\tkzLabelPoints(B,C)
\tkzDrawPoints[red](p1,p2,p3,p4,p5,p6,p7,p8,p9)
\tkzLabelPoints[above](A)
\tkzLabelPoints[above right](K)

\end{tikzpicture}
\end{center}

14.8.19. Method thebault or c_c

The c_c (or thebault) method constructs a circle tangent to two sides of a triangle at a chosen vertex, and
tangent to a given circle passing through the two remaining vertices.

Name and purpose:
Circle tangent to the two sides issuing from a vertex 𝑝 and tangent to the circle centered at 𝐶 passing through
the other two vertices of the triangle. Alias: triangle.thebault = triangle.c_c.
Given a non-degenerate triangle 𝐴𝐵𝐶 and a chosen vertex 𝑝 ∈ {𝐴,𝐵,𝐶}, this method constructs the unique
circle 𝒯 that

– is tangent to the two sides adjacent to 𝑝 (i.e. the lines through 𝑝 that contain the two incident edges of
the triangle), and

– is tangent to the circle with center 𝐶 and radius equal to the distance from 𝐶 to each of the two vertices
other than 𝑝.

Signature:

circle triangle:c_c(p, C)

Parameters:

p The chosen vertex of the triangle (triangle.pa, .pb or .pc). The method internally detects which vertex
you passed.

C The center of the reference circle through the other two vertices (i.e. if 𝑝 = 𝐴, then CB= CC= C\!B and the
circle 𝒞(𝐶,CB) passes through 𝐵 and 𝐶). In practice, 𝐶 must lie on the perpendicular bisector of the
segment joining those two vertices.

Return value:
A circle object 𝒯 tangent to the two sides adjacent to 𝑝 and tangent to the circle 𝒞(𝐶, ⋅) through the other
two vertices.
Preconditions & diagnostics :
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– The triangle must be non-degenerate (three non-collinear points).

– The point p must coincide with one of the triangle’s vertices; otherwise the internal index resolution will
be inconsistent.

– The point C must be equidistant from the two vertices other than 𝑝 (i.e. it lies on their perpendicular
bisector). If not, the “reference circle” is ill-defined for this problem and the construction may fail or
produce an irrelevant circle.

Notes:

– This configuration is a classical variant often linked to Thébault-type constructions; for convenience an
alias triangle.thebault is provided.

– The circle returned is tangent to the lines supporting the two sides adjacent to 𝑝. If you need the segment
contact points explicitly, intersect the result with those lines and/or use orthogonal projections.

Example usage:

𝐴

𝐵 𝐶

𝑤𝑎

\directlua{
init_elements()
z.A = point(2, 4)
z.B = point(-3, 0)
z.C = point(3, 0)
T.ABC = triangle(z.A, z.B, z.C)
L.med = T.ABC:mediator(z.A)
z.Oa = L.med:point(1)
C.main = circle(z.Oa, z.C)
z.wa,
z.Ea = T.ABC:thebault(z.A, C.main):get()
}
\begin{center}
\begin{tikzpicture}%[ scale = 1]

\tkzGetNodes
\tkzDrawCircles(Oa,C)
\tkzDrawCircles(wa,Ea)
\tkzDrawPolygon[color = purple](A,B,C)
\tkzDrawPoints(A,B,C,wa)
\tkzLabelPoints(A,B,C,wa)

\end{tikzpicture}
\end{center}

Application:
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𝐴

𝐵 𝐶

𝑤𝑎

𝑤𝑏
𝑤𝑐

\directlua{
init_elements()
z.A = point(2, 4)
z.B = point(-3, 0)
z.C = point(3, 0)
T.ABC = triangle(z.A, z.B, z.C)
L.med = T.ABC:mediator(z.A)
z.Oa = L.med:point(1)
C.main = circle(z.Oa, z.C)
z.wa,
z.Ea = T.ABC:thebault(z.A, C.main):get()
L.med = T.ABC:mediator(z.B)
z.Ob = L.med:point(1)
C.main = circle(z.Ob, z.C)
z.wb,
z.Eb = T.ABC:thebault(z.B, C.main):get()
L.med = T.ABC:mediator(z.C)
z.Oc = L.med:point(1)
C.main = circle(z.Oc, z.A)
z.wc,
z.Ec = T.ABC:thebault(z.C, C.main):get()
}
\begin{center}
\begin{tikzpicture}[scale = .7]
\tkzGetNodes
\tkzFillCircles[purple!20,opacity=.2](Oa,C)
\tkzFillCircles[purple!40,opacity=.2](wa,Ea)
\tkzFillCircles[green!20,opacity=.2](Ob,C)
\tkzFillCircles[green!40,opacity=.2](wb,Eb)
\tkzFillCircles[orange!20,opacity=.2](Oc,A)
\tkzFillCircles[orange!40,opacity=.2](wc,Ec)
\tkzDrawCircles(Oa,C Ob,C Oc,A)
\tkzDrawCircles(wa,Ea wb,Eb wc,Ec)
\tkzDrawPolygon[color = purple](A,B,C)
\tkzDrawPoints(A,B,C,wa,wb,wc)
\tkzLabelPoints(A,B,C,wa,wb,wc)

\end{tikzpicture}
\end{center}

14.8.20. Method mixtilinear_incircle(arg)

A circle that in internally tangent to two sides of a triangle and to the circumcircle is called a mixtilinear incircle.
There are three mixtilinear incircles, one corresponding to each angle of the triangle.

MathWorld — van Lamoen, Floor. ”Mixtilinear Incircles.

The argument is either one of the vertices of the triangle or an integer between 0 and 2.
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𝐴 𝐵

𝐶

\directlua{
z.A = point(0, 0)
z.B = point(5, 0)
z.C = point(-1, 4)
T.ABC = triangle(z.A, z.B, z.C)
C.mix = T.ABC:mixtilinear_incircle(z.B)
z.w, z.t = C.mix:get()
z.O = T.ABC.circumcenter}
\begin{tikzpicture}
\tkzGetNodes
\tkzDrawCircles(w,t O,A)
\tkzDrawPolygon(A,B,C)
\tkzDrawPoints(A,B,C)
\tkzLabelPoints(A,B)
\tkzLabelPoints[above](C)
\end{tikzpicture}

14.8.21. Method three_tangent_circles()

Any three points can serve as the centers of three mutually tangent circles. If we connect these centers, we
obtain a triangle. The angle bisectors of this triangle meet at a single point called the incenter. From this
point, perpendiculars dropped to the three sides determine the points of tangency with an inscribed circle (the
incircle).

This incircle touches each side at exactly one point, and those points also serve as the common tangency points
with the three outer circles. Each of these outer circles is defined by one vertex of the triangle (its center) and
the tangency point opposite to it.

The method three_tangent_circles() implements this geometric construction as follows:

– it computes the incenter of the triangle,

– finds the perpendicular projections of this incenter onto the three sides,

– and constructs the three outer circles, each passing through one vertex and tangent to the incircle.

Return value:
Three circle objects tangent to one another and to the triangle’s sides.
Example usage:
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𝐴 𝐵

𝐶

\directlua{
init_elements()
z.A = point(0, 0)
z.B = point(5, 0)
z.C = point(1, 4)
T.ABC = triangle(z.A, z.B, z.C)
C.A,
C.B,
C.C = T.ABC:three_tangent_circles()
z.ta = C.A.through
z.tb = C.B.through
z.tc = C.C.through
C.ins = T.ABC:in_circle()
z.I, z.T = C.ins:get()}

\begin{center}
\begin{tikzpicture}[scale=.6]
\tkzGetNodes
\tkzDrawCircles(A,ta B,tb C,tc I,T)
\tkzDrawPolygon(A,B,C)
\tkzDrawPoints(A,B,C)
\tkzLabelPoints(A,B)
\tkzLabelPoints[above](C)
\end{tikzpicture}
\end{center}

14.8.22. Method three_apollonius_circles()

This method constructs the three Apollonius circles of a non-degenerate triangle.

Geometric background: Given a triangle 𝐴𝐵𝐶 with side lengths 𝑎 = 𝐵𝐶, 𝑏 = 𝐶𝐴, and 𝑐 = 𝐴𝐵, one can
associate to each vertex an Apollonius circle, defined as the locus of points 𝑀 for which the ratio of distances
to the two opposite vertices is fixed (in terms of the side lengths of the triangle).
These three Apollonius circles have the remarkable property that they intersect in exactly two common points,
which are the isodynamic points of the triangle (see Method isodynamic_points()).

Description. The method three_apollonius_circles() builds the three Apollonius circles associated with
the triangle and returns them as circle objects.

Return values:

– Ca — Apollonius circle associated with side 𝑎 =𝐵𝐶,

– Cb — Apollonius circle associated with side 𝑏 =𝐶𝐴,

– Cc — Apollonius circle associated with side 𝑐 =𝐴𝐵.

Example:

Ca, Cb, Cc = T.ABC:three_apollonius_circles()

Each of Ca, Cb, and Cc is a circle object that can be used in further constructions (for instance, to compute
the isodynamic points from their intersections).

Application:
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𝐴 𝐵𝑤1

𝑤2

𝑤3

𝐶
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\directlua{%
z.A = point (0, 0)
z.B = point (4, 0)
z.C = point (0, 3)
T.ABC = triangle (z.A, z.B, z.C)
C.ab, C.bc,
C.ca = T.ABC:three_apollonius_circles()
z.w1, z.t1 = C.ab:get()
z.w2, z.t2 = C.bc:get()
z.w3, z.t3 = C.ca:get()}
\begin{center}
\begin{tikzpicture}[scale=.5]
\tkzGetNodes
\tkzDrawLines[add = 2 and 2,

dashed](A,B B,C C,A)
\tkzDrawPolygons(A,B,C)
\tkzDrawCircle[purple](O,A)
\tkzDrawCircles[cyan](w1,t1 w2,t2 w3,t3)
\tkzDrawLines[purple](w3,w2)
\tkzDrawPoints(A,B,C,w1,w2,w3)
\tkzLabelPoints(A,B,w1,w2,w3)
\tkzLabelPoints[above](C)

\end{tikzpicture}
\end{center}

14.8.23. Method apollonius_circle(side, EPS)

This method returns one of the three Apollonius circles of the triangle.

Description: Given a triangle 𝐴𝐵𝐶, the method apollonius_circle(side) constructs the Apollonius circle
associated with the specified side:

– "ab" → Apollonius circle opposite vertex 𝐶,

– "bc" → Apollonius circle opposite vertex 𝐴,

– "ca" → Apollonius circle opposite vertex 𝐵.

The optional parameter EPS controls numerical tolerance for the underlying intersection or ratio calculations.
If omitted, it defaults to tkz.epsilon.

Return value: A single circle object corresponding to the chosen side.

Example:

Cc = T.ABC:apollonius_circle("ab")

This circle can be used independently or as part of the construction of the three Apollonius circles or the
isodynamic points.

Application:
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𝐴 𝐵

𝐶

𝑃 𝑄

\directlua{
z.A = point(0, 0)
z.B = point(5, 0)
z.C = point(4.5, 2)
T.ABC = triangle: new(z.A, z.B, z.C)
C.apo_ab = T.ABC:apollonius_circle("ab")
z.N,z.K = C.apo_ab:get()
z.P,
z.Q = T.ABC:apollonius_points("ab")}

\begin{center}
\begin{tikzpicture}[scale=.75]
\tkzGetNodes
\tkzDrawPolygons[red](A,B,C)
\tkzDrawCircle(N,K)
\tkzDrawLine[dashed](B,Q)
\tkzDrawPoints(A,B,C,P,Q)
\tkzLabelPoints(A,B)
\tkzLabelPoints[above](C,P,Q)
\end{tikzpicture}
\end{center}

14.8.24. Method feuerbach_apollonius_k181(<EPS<)

This method constructs a circle through three points obtained from simple line–line intersections involving:

– the three Feuerbach points 𝐸𝑎,𝐸𝑏,𝐸𝑐,

– the Apollonius point 𝐾181 of the triangle,

– the Spieker center 𝑆.

Construction idea: For each Feuerbach point 𝐸𝑎, consider the lines (𝐴,𝐾181) and (𝑆,𝐸𝑎). Their intersection
defines a point 𝑥𝑎. Repeating the process with 𝐵,𝐸𝑏 and 𝐶,𝐸𝑐 gives three points 𝑥𝑎,𝑥𝑏,𝑥𝑐 which always lie on
a unique circle.
This circle is the Apollonius–K181 Feuerbach circle.
Usage:

local C = T.ABC:feuerbach_apollonius_k181()

Return: A circle object: the circumcircle of the three intersection points 𝑥𝑎,𝑥𝑏,𝑥𝑐.

14.8.25. Method feuerbach_apollonius(EPS)

This method constructs a remarkable Apollonius-type circle associated with the triangle. The construction is
based on three Feuerbach points and an inversion in a circle orthogonal to the excircle touching point.
Definition: Let 𝐸𝑎,𝐸𝑏,𝐸𝑐 be the three Feuerbach contact points of the triangle, and let 𝐽𝑎 be the excenter
opposite to vertex 𝐴. Let 𝐶𝐽𝑎𝐸𝑎 be the circle with center 𝐽𝑎 passing through 𝐸𝑎, and let 𝑆 be the Spieker center.
The circle 𝐶𝐽𝑎𝐸𝑎 admits a unique orthogonal circle through 𝑆. Inverting the Euler circle in this orthogonal circle
maps the three Feuerbach points to points 𝑥𝑎,𝑥𝑏,𝑥𝑐 which lie on a common circle. This is the Feuerbach–
Apollonius circle.

Usage:

local C = T.ABC:feuerbach_apollonius()

Return: A circle object: the circle passing through the three inverted Feuerbach points.
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14.9. Returns a triangle

14.9.1. Method medial()

The medial triangle of a triangle 𝐴𝐵𝐶 is the triangle formed by connecting the midpoints 𝑀𝑎, 𝑀𝑏, and 𝑀𝑐 of
the sides 𝐵𝐶, 𝐴𝐶, and 𝐴𝐵 respectively. This triangle is similar to the reference triangle and shares the same
centroid.
The medial triangle is sometimes also called the auxiliary triangle Dixon 1991. It appears frequently in classical
geometry and serves as a useful tool for constructions involving symmetry, similarity, and triangle centers.

Weisstein, Eric W. ”Medial Triangle.” From MathWorld—A Wolfram Web Resource.
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𝑂

𝐶
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𝑀𝑎
𝐺

\directlua{
init_elements()
z.A = point(0, 1)
z.B = point(5, 0)
z.C = point(2, 4)
T.ABC = triangle(z.A, z.B, z.C)
T.med = T.ABC:medial()
z.Ma, z.Mb, z.Mc= T.med:get()
z.G = T.ABC.centroid
z.O = T.ABC.circumcenter}

14.9.2. Method orthic()

Given a triangle 𝐴𝐵𝐶, the triangle 𝐻𝐴𝐻𝐵𝐻𝐶 formed by connecting the feet of the perpendiculars dropped from
each vertex to the opposite side is called the orthic triangle, or sometimes the altitude triangle.
The points 𝐻𝐴, 𝐻𝐵, and 𝐻𝐶 are the feet of the altitudes from 𝐴, 𝐵, and 𝐶, respectively. The three altitudes
(𝐴𝐻𝐴), (𝐵𝐻𝐵), and (𝐶𝐻𝐶) are concurrent at a single point: the orthocenter 𝐻 of the triangle 𝐴𝐵𝐶.
This method returns the triangle 𝐻𝐴𝐻𝐵𝐻𝐶 as a new triangle object.

𝐴

𝐵

𝐶

𝐻𝑎
𝐻𝑏

𝐻𝑐

𝐻

\directlua{
init_elements()
z.A = point(0, 0)
z.B = point(5, 1)
z.C = point(2, 4)
T.ABC = triangle(z.A, z.B, z.C)
T.H = T.ABC:orthic()
z.Ha, z.Hb, z.Hc = T.H:get()
z.H = T.ABC.orthocenter

}
\begin{tikzpicture}

\tkzGetNodes
\tkzDrawPolygon(A,B,C)
\tkzDrawPolygon(Ha,Hb,Hc)
\tkzDrawPoints(A,B,C,Ha,Hb,Hc,H)
\tkzLabelPoints(A,B,C,Ha,Hb,Hc,H)
\tkzMarkRightAngle(A,Hc,B)
\tkzMarkRightAngle(B,Ha,C)
\tkzMarkRightAngle(C,Hb,A)

\end{tikzpicture}

14.9.3. Method incentral()

The incentral triangle 𝐼𝑎𝐼𝑏𝐼𝑐 is the Cevian triangle of the reference triangle 𝐴𝐵𝐶 with respect to its incenter 𝐼.
That is, the vertices of the incentral triangle are the points where the internal angle bisectors of triangle 𝐴𝐵𝐶
intersect the opposite sides.
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This triangle is useful in many triangle center constructions, especially in connection with the incircle and the
Gergonne point.

Weisstein, Eric W. ”Incentral Triangle.” From MathWorld–A Wolfram Web Resource.

𝐴 𝐵𝐼𝑐

𝐼
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𝐶

𝐼𝑏
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\directlua{
init_elements()
z.A = point(0, 0)
z.B = point(6, 0)
z.C = point(1, 4)
T.ABC = triangle(z.A, z.B, z.C)
z.I = T.ABC.incenter
z.Ia, z.Ib,
z.Ic = T.ABC:incentral():get()
z.Ta, z.Tb,
z.Tc = T.ABC:intouch():get()}

14.9.4. Method excentral()

The excentral triangle, also called the tritangent triangle, of a reference triangle 𝐴𝐵𝐶 is the triangle 𝐽𝐴𝐽𝐵𝐽𝐶
whose vertices are the excenters of 𝐴𝐵𝐶. Each excenter is the intersection point of two external angle bisectors
and one internal angle bisector of the triangle.
The excentral triangle plays an important role in triangle geometry, particularly in constructions involving the
excircles, the Bevan circle, and certain triangle centers.

Weisstein, Eric W. ”Excentral Triangle.” From MathWorld–A Wolfram Web Resource.

𝐴
𝐵

𝐽𝑐

𝐼

𝐶 𝐽𝑎
𝐽𝑏

\directlua{
init_elements()
z.A = point(0, 0)
z.B = point(3, -0.5)
z.C = point(1.2, 2)
T.ABC = triangle(z.A, z.B, z.C)
T.exc = T.ABC:excentral()
z.I = T.ABC.incenter
z.Ja, z.Jb, z.Jc = T.exc:get()
z.Xa, _, _ = T.ABC:projection(z.Ja)
z.Xb, _, _ = T.ABC:projection(z.Jb)
z.Xc, _, _ = T.ABC:projection(z.Jc)}
\begin{tikzpicture}[scale=.75]

\tkzGetNodes
\tkzDrawLines[add=1 and 1](A,B B,C C,A)
\tkzDrawPolygon[cyan](A,B,C)
\tkzDrawCircles[cyan](Ja,Xa Jb,Xb Jc,Xc)
\tkzDrawPolygon[orange](Ja,Jb,Jc)
\tkzDrawSegments[orange](A,Ja B,Jb C,Jc)
\tkzDrawPoints(A,B,C,Ja,Jb,Jc,I)
\tkzLabelPoints(A,B,Jc,I)
\tkzLabelPoints[above](C,Ja,Jb)

\end{tikzpicture}

14.9.5. Method intouch()

The contact triangle of a triangle 𝐴𝐵𝐶, also known as the intouch triangle, is the triangle 𝑡𝑎𝑡𝑏𝑡𝑐 formed by
the points of tangency of the incircle of 𝐴𝐵𝐶 with its three sides. These points are where the incircle touches
𝐵𝐶, 𝐴𝐶, and 𝐴𝐵 respectively.
The intouch triangle is useful in studying properties related to the incircle and its associated centers such as
the Gergonne point.
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Weisstein, Eric W. ”Contact Triangle.” From MathWorld–A Wolfram Web Resource.
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𝑏
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𝑐 𝑡𝑎

\directlua{
init_elements()
z.a = point(1, 0)
z.b = point(6, 3)
z.c = point(1, 3)
T.abc = triangle(z.a, z.b, z.c)
z.g = T.abc:gergonne_point ()
z.i = T.abc.incenter
z.ta, z.tb,
z.tc = T.abc:intouch():get()}

14.9.6. Method extouch()

The extouch triangle of a triangle 𝐴𝐵𝐶 is the triangle formed by the points of tangency of the triangle with
its three excircles. Each excircle is tangent to one side of the triangle and the extensions of the other two. The
points of tangency lie respectively on the sides 𝐵𝐶, 𝐴𝐶, and 𝐴𝐵.
The extouch triangle is the Cevian triangle of the Nagel point, which is the point of concurrency of the segments
joining the triangle’s vertices to the points where the opposite excircles touch the triangle.

Weisstein, Eric W. ”Extouch Triangle.” From MathWorld–A Wolfram Web Resource.

z.E_a,z.E_b,z.E_c = T.ABC:cevian(z.Na):get()
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𝐸𝑎
𝐸𝑏

𝐶

\directlua{
z.A = point(0, 0)
z.B = point(3.6, 0)
z.C = point(2.8, 4)
T.ABC = triangle(z.A, z.B, z.C)
z.Na = T.ABC:nagel_point()
z.J_a,z.J_b,
z.J_c = T.ABC:excentral():get()
z.E_a,z.E_b,
z.E_c = T.ABC:extouch():get()}

14.9.7. Method feuerbach()

The Feuerbach triangle of a reference triangle 𝐴𝐵𝐶 is the triangle formed by the three points of tangency
between the nine-point circle and the three excircles of 𝐴𝐵𝐶.
By Feuerbach’s theorem, each excircle is tangent to the nine-point circle, and these three tangency points define
the Feuerbach triangle.
The circumcenter of the Feuerbach triangle coincides with the nine-point center of triangle 𝐴𝐵𝐶.

Weisstein, Eric W. ”Feuerbach Triangle.” From MathWorld–A Wolfram Web Resource.
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\directlua{
init_elements()
z.A = point(0, 0)
z.B = point(6, 0)
z.C = point(0.8, 4)
T.ABC = triangle(z.A, z.B, z.C)
z.N = T.ABC.eulercenter
z.Fa, z.Fb,
z.Fc = T.ABC:feuerbach():get()
z.Ja, z.Jb,
z.Jc = T.ABC:excentral():get()}
\begin{tikzpicture}
\tkzGetNodes
\tkzInit[xmin=-1,xmax=7,ymin=-1,ymax=5]
\tkzClip
\tkzDrawPoints(Ja,Jb,Jc)
\tkzDrawPolygons(Fa,Fb,Fc)
\tkzFillCircles[green!30,

opacity=.25](N,Fa)
\tkzDrawLines[add=3 and 3](A,B A,C B,C)
\tkzDrawCircles(Ja,Fa Jb,Fb Jc,Fc N,Fa)
\tkzDrawPoints(A,B,C,Fa,Fb,Fc,N)
\tkzLabelPoints(N,A,B,Fc)
\tkzLabelPoints[above](Fa)
\tkzLabelPoints[left](Fb,C)

\end{tikzpicture}

14.9.8. Method cevian()

A Cevian is a line segment that joins a vertex of a triangle to a point on the opposite side (or its extension).
The condition for three Cevians to concur is given by Ceva’s Theorem.
Given a point 𝑃 in the interior of triangle 𝐴𝐵𝐶, the Cevians from each vertex through 𝑃 intersect the opposite
sides at points 𝑃𝑎, 𝑃𝑏, and 𝑃𝑐. The triangle 𝑃𝑎𝑃𝑏𝑃𝑐 is called the Cevian triangle of 𝐴𝐵𝐶 with respect to 𝑃.
The circumcircle of the triangle 𝑃𝑎𝑃𝑏𝑃𝑐 is known as the Cevian circle.

Weisstein, Eric W. ”Cevian Triangle.” From MathWorld–A Wolfram Web Resource.
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\directlua{
init_elements()
z.A = point(0, 0)
z.B = point(4, 0)
z.C = point(1.8, 3)
T.ABC = triangle(z.A, z.B, z.C)
z.Q = point(1, -0.4)
z.P = point(2, 1)
T.cevian = T.ABC:cevian(z.Q)
z.Qa, z.Qb, z.Qc = T.cevian:get()
T.cevian = T.ABC:cevian(z.P)
z.Pa, z.Pb, z.Pc = T.cevian:get()
C.cev = T.ABC:cevian_circle(z.P)
z.w = C.cev.center}

14.9.9. Method symmedian()

The lines 𝐴𝐿𝑎, 𝐵𝐿𝑏, and 𝐶𝐿𝑐 which are isogonal to the triangle medians 𝐴𝑀𝑎, 𝐵𝑀𝑏, and 𝐶𝑀𝑐 of a triangle are
called the triangle’s symmedian. The symmedians are concurrent in a point 𝐿 called the Lemoine point or the
symmedian point which is the isogonal conjugate of the triangle centroid 𝐺.
The symmedial or symmedian triangle 𝐿𝑎𝐿𝑏𝐿−𝑐 is the triangle whose vertices are the intersection points of the
symmedians with the reference triangle 𝐴𝐵𝐶.
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The following example groups several concepts around the symmedian. As a reminder, a symmedian of a triangle
is the reflection of the median with respect to the angle bisector.

Weisstein, Eric W. ”Symmedian Point.” From MathWorld–A Wolfram Web Resource.
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\directlua{
init_elements()
z.A = point(1, 2)
z.B = point(5, 1)
z.C = point(3, 5)
T.ABC = triangle(z.A, z.B, z.C)
T.SY = T.ABC:symmedian ()
z.L_a,z.L_b,z.L_c = T.SY:get()
z.L = T.ABC:lemoine_point()}

14.9.10. Method euler()

The Euler triangle of a triangle 𝐴𝐵𝐶 is the triangle 𝐸𝐴𝐸𝐵𝐸𝐶 whose vertices are the midpoints of the segments
joining the orthocenter 𝐻 to each of the respective vertices. These points, called the Euler points, lie on the
nine-point circle and are among the nine classical points of triangle geometry.

Weisstein, Eric W. ”Euler Triangle.” From MathWorld–A Wolfram Web Resource.
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\directlua{
init_elements()
z.A = point(0, 0)
z.B = point(5, 0)
z.C = point(1, 4)
T.ABC = triangle(z.A, z.B, z.C)
z.N = T.ABC.eulercenter
z.H = T.ABC.orthocenter
T.euler = T.ABC:euler()
z.E_A,
z.E_B,
z.E_C = T.euler:get ()
z.H_A,
z.H_B,
z.H_C = T.ABC:orthic():get ()}

14.9.11. Method yiu()

The Yiu triangle 𝑂𝐴𝑂𝐵𝑂𝐶 is the triangle formed by the centers of the Yiu circles. See [14.8.17]
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\directlua{
z.A = point(-.2, 2)
z.B = point(0, 0)
z.C = point(2, 0)
T.ABC = triangle(z.A, z.B, z.C)
T.Yiu = T.ABC:yiu()
z.O_A, z.O_B,
z.O_C = T.Yiu:get()}

\begin{tikzpicture}
\tkzGetNodes
\tkzInit[xmin=-3,xmax=4,ymin=-2.5,ymax=3]
\tkzClip
\tkzDrawPolygon(A,B,C)
\tkzDrawPolygon[red](O_A,O_B,O_C)
\tkzDrawCircles[blue](O_A,A O_B,B O_C,C)
\tkzDrawPoints(A,B,C,O_A,O_B,O_C)
\tkzLabelPoints(B,C,O_A,O_B)
\tkzLabelPoints[above](A,O_C)

\end{tikzpicture}

14.9.12. Method reflection()

This method returns a triangle whose vertices are the reflections of the original triangle’s vertices with respect
to the opposite sides. That is, each vertex is reflected across the side opposite to it.

𝐵 𝐶

𝐴′

𝐶′

𝐴 𝐵′ \directlua{%
z.A = point(-.2, 2)
z.B = point(0, 0)
z.C = point(2, 0)
T.ABC = triangle(z.A,z.B,z.C)
z.Ap,
z.Bp,
z.Cp = T.ABC:reflection():get()
}
\begin{tikzpicture}
\tkzGetNodes
\tkzDrawPolygons(A,B,C A',B',C')
\tkzDrawPoints(A,B,C,A',B',C')
\tkzLabelPoints(B,C,A',C')
\tkzLabelPoints[above](A,B')
\end{tikzpicture}

14.9.13. Method circumcevian(pt)

Given a triangle 𝐴𝐵𝐶 and a point 𝑃 not located at a vertex, the circumcevian triangle is defined as follows:
let 𝐴 ′ be the second point of intersection (other than 𝐴) between the line (𝐴𝑃) and the circumcircle of 𝐴𝐵𝐶;
define 𝐵 ′ and 𝐶 ′ analogously for lines (𝐵𝑃) and (𝐶𝑃). The triangle 𝐴 ′𝐵 ′𝐶 ′ is then called the circumcevian
triangle of 𝐴𝐵𝐶 with respect to point 𝑃.
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𝐴 𝐵
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\directlua{
z.A = point(0, 0)
z.B = point(5, 0)
z.C = point(2, 4)
T.ABC = triangle(z.A, z.B, z.C)
z.H = T.ABC.orthocenter
z.O = T.ABC.circumcenter
z.Ha, z.Hb, z.Hc = T.ABC:orthic():get()
z.a, z.b, z.c = T.ABC:tangential():get()
z.p, z.q, z.r = T.ABC:circumcevian(z.H):get()
}

\begin{center}
\begin{tikzpicture}[ scale = .5]

\tkzGetNodes
\tkzDrawPolygons[red](A,B,C a,b,c)
\tkzDrawCircle(O,A)
\tkzDrawPoints(A,B,C,O,H,p,q,r)
\tkzDrawSegments[red](C,Hc B,Hb A,Ha)
\tkzDrawPolygons[blue](Ha,Hb,Hc)
\tkzLabelPoints(A,B,C,O,a,b,c)
\tkzLabelPoints[font=\small](Hc)
\tkzLabelPoints[font=\small,above](Ha,Hb)

\end{tikzpicture}
\end{center}

14.9.14. Method tangential()

The tangential triangle is the triangle 𝑇𝑎𝑇𝑏𝑇𝑐 formed by the lines tangent to the circumcircle of a given triangle
DeltaABC at its vertices. It is therefore antipedal triangle of 𝐴𝐵𝐶 with respect to the circumcenter 𝑂. It is
also anticevian triangle of 𝐴𝐵𝐶 with the symmedian point 𝐾 as the anticevian point(Kimberling 1998, p. 156).
Furthermore, the symmedian point 𝐾 of 𝐴𝐵𝐶 is the Gergonne point of 𝑇𝑎𝑇𝑏𝑇𝑐.
The sides of an orthic triangle are parallel to the tangents to the circumcircle at the vertices(Johnson 1929, p.
172). This is equivalent to the statement that each line from a triangle’s circumcenter to a vertex is always
perpendicular to the corresponding side of the orthic triangle(Honsberger 1995, p. 22), and to the fact that the
orthic and tangential triangles are homothetic.

Weisstein, Eric W. ”Tangential Triangle.” From MathWorld–A Wolfram Web Resource.

𝐴

𝑂

𝑇𝑐

𝐶

𝑇𝑎

𝐻𝑐

𝐵

𝐻𝑏

𝑇𝑏

𝐻𝑎

\directlua{
init_elements()
z.A = point(0, 0)
z.B = point(4, 0)
z.C = point(2, 3)
T.ABC triangle(z.A, z.B, z.C)
z.H = T.ABC.orthocenter
z.O = T.ABC.circumcenter
z.L = T.ABC:symmedian_point()
T.orthic = T.ABC:orthic()
z.Ha,
z.Hb,
z.Hc = T.orthic:get()
z.Ta,
z.Tb,
z.Tc = T.ABC:tangential():get()}

14.9.15. Method anti()

The anticomplementary triangle of a reference triangle 𝐴𝐵𝐶 is the triangle 𝑇𝑎𝑇𝑏𝑇𝑐 whose medial triangle is
𝐴𝐵𝐶. It is also known as the anticevian triangle of the centroid 𝐺 (see Kimberling 1998, p. 156). This triangle
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is obtained by extending each side of the reference triangle beyond its vertices such that the new triangle is
homothetic to the reference triangle with ratio −2 and center 𝐺.

Weisstein, Eric W. ”Anticomplementary Triangle.” From MathWorld–A Wolfram Web Resource.

This method constructs a new triangle whose sides are parallel to the sides of the original triangle and which
pass through its vertices.

This triangle can be obtained using any of the following method names: anti, anticomplementary, or similar.

The anticomplementary triangle is the triangle 𝑇𝑎𝑇𝑏𝑇𝑐 which has a given triangle 𝐴𝐵𝐶 as its medial triangle.
It is therefore the anticevian triangle with respect to the triangle centroid G(Kimberling 1998, p. 156).

Weisstein, Eric W. ”Anticomplementary Triangle.” From MathWorld–A Wolfram Web Resource.

This method creates a new triangle whose sides are parallel to the sides of the original triangle and pass through
its vertices. You have several method names for obtaining this triangle: either anticomplementary or similar.

𝐴 𝐵

𝑇𝑐

𝑇𝑎𝑇𝑏 𝐶

\directlua{
init_elements()
z.A = point(0, 0)
z.B = point(5, 0)
z.C = point(2, 4)
T.ABC = triangle(z.A, z.B, z.C)
T.similar = T.ABC:anti()
z.Ta,
z.Tb,
z.Tc = T.similar:get()}

14.9.16. Method lemoine()

The Lemoine triangle of a reference triangle 𝐴𝐵𝐶 is the Cevian triangle associated with the Kimberling center
𝑋(598). Its vertices are the points of tangency between the Lemoine inellipse and the sides of triangle 𝐴𝐵𝐶.

This triangle provides an elegant construction linked to the geometry of the Lemoine point and highlights
interesting affine properties. The method returns the triangle formed by these three tangency points.

𝐴 𝐵

𝐿𝐺

𝐶 \directlua{
z.A = point(0, 0)
z.B = point(5, 0)
z.C = point(4.6, 3)
T.ABC = triangle(z.A, z.B, z.C)
z.L = T.ABC:lemoine_point()
z.G = T.ABC.centroid
EL = T.ABC:lemoine_inellipse()
curve = EL:points(0, 1, 100)
z.Xa, z.Xb,
z.Xc = T.ABC:lemoine():get()}
\begin{tikzpicture}
\tkzGetNodes
\tkzDrawCoordinates[smooth,red](curve)
\tkzDrawPolygons[cyan](A,B,C Xa,Xb,Xc)
\tkzDrawPoints(A,B,L,Xa,Xb,Xc,G)
\tkzLabelPoints(A,B,L,G)
\tkzLabelPoints[above](C)
\end{tikzpicture}

14.9.17. Method macbeath()

The MacBeath triangle, is the triangle whose vertices are the contact points of the MacBeath inconic with the
reference triangle. 𝑀𝐵 is the MacBeath point

tkz-elements AlterMundus
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𝐵 𝐶

𝑀𝐵

𝐴 \directlua{
init_elements()
z.A = point(.5, 3)
z.B = point(0, 0)
z.C = point(5, 0)
T.ABC = triangle(z.A, z.B, z.C)
z.MB = T.ABC:kimberling(264)
z.Xa, z.Xb,
z.Xc = T.ABC:macbeath():get()}
\begin{tikzpicture}
\tkzGetNodes
\tkzDrawPolygons(A,B,C Xa,Xb,Xc)
\tkzDrawSegments(A,Xa B,Xb C,Xc)
\tkzDrawPoints(A,B,C,MB,Xa,Xb,Xc)
\tkzLabelPoints(B,C,MB)
\tkzLabelPoints[above](A)
\end{tikzpicture}

14.10. Returns a conic

As the code is relatively large, I’ve avoided including the tkz-euclide part in most of the examples. You can
find the complete code in the source of this document in the file TKZdoc-elements-triangle.tex.
The most important point is to trace the conics, which is done with the help of a tool:

\tkzDrawCoordinates[smooth,cyan](curve)

14.10.1. Method kiepert_parabola

Among all parabolas tangent to the sides of a triangle, the Kiepert parabola is distinguished by its geometric
properties. Its directrix coincides with the Euler line of the triangle, and it is also tangent to the Lemoine axis.

This parabola encapsulates rich affine and projective structures and arises in various advanced triangle geometry
contexts.

𝐵

𝑂
𝐻

𝐾

𝑎

𝑏

𝐶

𝐴

𝐹

𝑐

\directlua{
init_elements()
z.A = point(0, 0)
z.B = point(6, 0)
z.C = point(1.1, 4.5)
T.ABC = triangle(z.A, z.B, z.C)
z.H = T.ABC.orthocenter
z.O = T.ABC.circumcenter
kiepert = T.ABC:kiepert_parabola()
curve = kiepert:points(-5, 7, 50)
z.F = kiepert.Fa
z.S = kiepert.vertex
z.K = kiepert.K
z.a = intersection(kiepert, T.ABC.ab)
z.b = intersection(kiepert, T.ABC.bc)
z.c = intersection(kiepert, T.ABC.ca)}

14.10.2. Method kiepert_hyperbola()

The Kiepert hyperbola is a remarkable triangle conic that arises from Lemoine’s problem and its extension
involving isosceles triangles constructed externally on the sides of a given triangle.
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This hyperbola possesses several notable geometric properties: it passes through the three vertices of the triangle,
its centroid, and its orthocenter.

Weisstein, Eric W. ”Kiepert Hyperbola.” From MathWorld–A Wolfram Web Resource.

𝐴 𝐵

𝐶

𝐺

𝐹𝑎

𝐹𝑏

𝐾

\directlua{
init_elements()
z.A = point(0, 0)
z.B = point(5, 0)
z.C = point(4, 4)
T.ABC = triangle(z.A, z.B, z.C)
z.K = T.ABC:kimberling(115)
z.circumcenter = T.ABC.circumcenter
z.G = T.ABC.centroid
L.brocard = T.ABC:brocard_axis()
C.circum = circle(z.circumcenter, z.A)
z.M,
z.N = intersection(L.brocard, C.circum)
L.asx = T.ABC:simson_line(z.M)
L.asy = T.ABC:simson_line(z.N)
z.ux, z.uy = L.asx:get()
z.vx, z.vy = L.asy:get()
CO.HY = T.ABC:kiepert_hyperbola()
curve = CO.HY:points(-3, 3, 50)
curveb = CO.HY:points(-3, 3, 50, "swap")
z.F_a, z.F_b = CO.HY.Fa, CO.HY.Fb}

14.10.3. Method euler_ellipse()

The Euler ellipse is a conic section associated with a triangle. It is tangent to the three sides of the triangle
and has two notable triangle centers as its foci: the orthocenter and the circumcenter.

This ellipse can be seen as a generalization of the Euler circle (nine-point circle), which is obtained when the
conic becomes a circle. The method euler_ellipse() computes this conic based on the triangle geometry.
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An example combining both the Euler circle and the Euler ellipse is provided in the documentation to illustrate
their relationship.

𝐵 𝐶

𝑁

𝑂

𝐻

𝐺

𝐴
\directlua{

init_elements()
z.A = point(2, 3.8)
z.B = point(0, 0)
z.C = point(6.2, 0)
L.AB = line(z.A, z.B)
T.ABC = triangle(z.A, z.B, z.C)
z.K = tkz.midpoint(z.B, z.C)
EL.euler = T.ABC:euler_ellipse()
curve = EL.euler:points(0, 1, 50)
z.N = T.ABC.eulercenter
C.euler = circle(z.N, z.K)
z.O = T.ABC.circumcenter
z.G = T.ABC.centroid
z.H = T.ABC.orthocenter}

14.10.4. Methods steiner_inellipse() and steiner_circumellipse()

These methods return the inner and outer Steiner ellipses associated with a triangle.

The Steiner inellipse is the unique ellipse inscribed in a triangle and tangent to the midpoints of its sides.
Its center is the centroid of the triangle. It minimizes the sum of the squared distances from any point on the
ellipse to the triangle’s sides.

The Steiner circumellipse, or outer ellipse, is the unique ellipse circumscribed about the triangle, passing
through the three vertices and centered at the centroid. It minimizes the sum of the squared distances from the
vertices to the ellipse.

These constructions are valid for acute triangles. The orthoptic circle, i.e., the locus of points from which chords
of the ellipse are seen under right angles, is also shown in the associated example.

Weisstein, Eric W. “Steiner Inellipse” ,
Weisstein, Eric W. “Steiner Circumellipse”

𝐶

𝐵

𝐴
𝐹

𝐸

𝐺

𝑇1

𝑇2 𝑀

\directlua{
init_elements()
z.A = point(1, 4)
z.B = point(11, 1)
z.C = point(5, 12)
T.ABC = triangle(z.A, z.B, z.C)
CO.EL_a = T.ABC:steiner_inellipse()
curve_a = CO.EL_a:points(0,1,100)
z.G = CO.EL_a.center
ang = math.deg(CO.EL_a.slope)
z.F = CO.EL_a.Fa
z.E = CO.EL_a.Fb
C = CO.EL_a:orthoptic()
z.w = C.center
z.o = C.through
CO.EL_b = T.ABC:steiner_circumellipse()
curve_b = CO.EL_b:points(0, 1, 100)
z.M = C:point(0)
L.T1,
L.T2 = CO.EL_a:tangent_from(z.M)
z.T1 = L.T1.pb
z.T2 = L.T2.pb}

tkz-elements AlterMundus

https://mathworld.wolfram.com/SteinerInellipse.html
https://mathworld.wolfram.com/SteinerCircumellipse.html


14. Class triangle 197

14.10.5. Method lemoine_inellipse

The Lemoine inellipse is the unique inconic (an inscribed conic) of a triangle that has the centroid 𝐺 and the
symmedian point 𝐾 as its foci.

This ellipse is always an actual ellipse and reflects key symmetries of the triangle. It is intimately connected
with the triangle’s geometry and often appears in advanced triangle center constructions.

Weisstein, Eric W. “Lemoine Ellipse.” From MathWorld

𝐴 𝐵

𝐿

𝑂

𝐺

𝐶

Le
m
oi
ne
_
ax
is

Brocard_line

\directlua{
init_elements()
z.A = point(0, 0)
z.B = point(5, 0)
z.C = point(5.6, 3)
T.ABC = triangle(z.A, z.B, z.C)
z.L = T.ABC:lemoine_point()
z.O = T.ABC.circumcenter
z.G = T.ABC.centroid
L.L = T.ABC:lemoine_axis()
z.la, z.lb = L.L:get()
L.B = T.ABC:brocard_axis()
z.ba, z.bb = L.B:get()
z.W = T.ABC:kimberling(39)
CO.EL = T.ABC:lemoine_inellipse()
curve = CO.EL:points(0, 1, 100)
z.Ka, z.Kb, z.Kc = T.ABC:symmedian():get()
z.Xa, z.Xb, z.Xc = T.ABC:lemoine():get()}

14.10.6. Method brocard_inellipse

The Brocard inellipse is the unique inconic of a triangle whose foci are the Brocard points and whose center is
the Brocard midpoint.

This ellipse is tangent to the sides of the reference triangle, and the triangle formed by its points of tangency is
the symmedial triangle of the reference triangle.

Weisstein, Eric W. “Brocard Ellipse.” From MathWorld

𝐴 𝐵

𝐿

𝑂
𝐵1

𝐵2

𝐶

Le
m
oi
ne
_
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Brocard_line

\directlua{
init_elements()
z.A = point(0, 0)
z.B = point(5, 0)
z.C = point(5.6, 3)
T.ABC = triangle(z.A, z.B, z.C)
z.L = T.ABC:lemoine_point()
z.O = T.ABC.circumcenter
L.L = T.ABC:lemoine_axis()
z.la, z.lb = L.L:get()
L.B = T.ABC:brocard_axis()
z.ba, z.bb = L.B:get()
z.B1 = T.ABC:first_brocard_point()
z.B2 = T.ABC:second_brocard_point()
z.W = T.ABC:kimberling(39)
CO.ELB = T.ABC:brocard_inellipse()
curve = CO.ELB:points(0, 1, 100)
z.Ka, z.Kb, z.Kc = T.ABC:symmedian():get()
z.Xa, z.Xb, z.Xc = T.ABC:lemoine():get()}
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14.10.7. Method macbeath_inellipse

The MacBeath inconic of a triangle is an ellipse tangent to the sides of the reference triangle.

Its foci are the circumcenter 𝑂 and the orthocenter 𝐻, which implies that its center is the nine-point center 𝑁.
The triangle formed by the points of tangency of the MacBeath ellipse with the triangle’s sides is called the
MacBeath triangle.

Weisstein, Eric W. “MacBeath Inconic.” From MathWorld

𝐵 𝐶

𝑀𝐵

𝐴 \directlua{
init_elements()
z.A = point(.5, 3)
z.B = point(0, 0)
z.C = point(5, 0)
T.ABC = triangle(z.A, z.B, z.C)
z.MB = T.ABC:kimberling(264)
z.Xa, z.Xb, z.Xc = T.ABC:macbeath():get()
CO = T.ABC:macbeath_inellipse()
curve = CO:points(0, 1, 100)}
\begin{tikzpicture}
\tkzGetNodes
\tkzDrawPolygons(A,B,C Xa,Xb,Xc)
\tkzDrawCoordinates[smooth,red](curve)
\tkzDrawSegments(A,Xa B,Xb C,Xc)
\tkzDrawPoints(A,B,C,MB,Xa,Xb,Xc)
\tkzLabelPoints(B,C,MB)
\tkzLabelPoints[above](A)
\end{tikzpicture}

14.10.8. Method mandart_inellipse

TheMandart ellipse is the inconic that touches the sides of the reference triangle at the vertices of the extouch
triangle, which is also its polar triangle.

Its center is the mittenpunkt 𝑀 of the triangle.

𝐵 𝐶𝑋𝑎

𝑀

𝐴

𝑌𝑏𝑍𝑐

\directlua{
init_elements()
z.A = point(1.5, 3)
z.B = point(0, 0)
z.C = point(5, 0)
T.ABC = triangle(z.A, z.B, z.C)
z.M = T.ABC:mittenpunkt_point()
T.exc = T.ABC:excentral()
z.Ja, z.Jb, z.Jc = T.exc:get()
z.Xa, _,_ = T.ABC:projection(z.Ja)
z.Xb, z.Yb,_ = T.ABC:projection(z.Jb)
z.Xc,_, z.Zc = T.ABC:projection(z.Jc)
CO = T.ABC:mandart_inellipse()
curve = CO:points(0, 1, 100)}
\begin{tikzpicture}
\tkzGetNodes
\tkzInit[xmin=-2,xmax=6,ymin=-2,ymax = 4]
\tkzClip
\tkzDrawPolygons[](A,B,C Xa,Yb,Zc)
\tkzDrawCoordinates[smooth,red](curve)
\tkzDrawCircles[cyan](Ja,Xa Jb,Xb Jc,Xc)
\tkzDrawPoints(A,B,C,Xa,M,Zc,Yb)
\tkzLabelPoints(B,C,Xa,M)
\tkzLabelPoints[above](A,Yb)
\tkzLabelPoints[left](Zc)
\end{tikzpicture}
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14.10.9. Method orthic_inellipse

The orthic inellipse is an inconic defined for acute triangles. It is tangent to the sides of the triangle at the
vertices of the orthic triangle, which also serves as its polar triangle.

Its center is the symmedian point 𝐾 of the reference triangle.

𝐴 𝐵

𝐾

𝐻𝑐

𝐻𝑏

𝐻𝑎

𝐶 \directlua{
z.A = point(0, 0)
z.B = point(6, 0)
z.C = point(1, 6)
T.ABC = triangle(z.A, z.B, z.C)
z.K = T.ABC:symmedian_point()
z.Ha, z.Hb, z.Hc = T.ABC:orthic():get()
CO =T.ABC:orthic_inellipse()
curve = CO:points(0, 1, 100)}

\begin{tikzpicture}
\tkzGetNodes
\tkzDrawCoordinates[smooth,red](curve)
\tkzDrawPolygons[red](A,B,C)
\tkzDrawPolygons[blue](Ha,Hb,Hc)
\tkzDrawPoints(A,B,C,K,Ha,Hb,Hc)
\tkzDrawSegments[red](C,Hc B,Hb A,Ha)
\tkzLabelPoints(A,B,K)
\tkzLabelPoints(Hc)
\tkzLabelPoints[left](Hb)
\tkzLabelPoints[above](Ha,C)
\end{tikzpicture}

14.11. The result is a square

14.11.1. Method square_inscribed(n)

This method constructs a square inscribed in the triangle.

The optional argument n (an integer) determines which side of the triangle serves as the base of the square.
The vertices of the triangle are cyclically ordered.

– If n = 0 or omitted, the base is the segment (𝑝𝑎,𝑝𝑏);

– If n = 1, the base is (𝑝𝑏,𝑝𝑐);

– If n = 2, the base is (𝑝𝑐,𝑝𝑎).

The constructed square lies entirely within the triangle and shares one side with the chosen base.

𝐵 𝐶

𝐴 \directlua{
z.A = point(3.8, 3.5)
z.B = point(0, 0)
z.C = point(5, 0)
T.ABC = triangle(z.A,z.B,z.C)
S = T.ABC:square_inscribed(1)
z.b1,z.b2,z.b3,z.b4 = S:get()
S = T.ABC:square_inscribed(0)
z.a1,z.a2,z.a3,z.a4 = S:get()}
\begin{tikzpicture}
\tkzGetNodes
\tkzDrawPolygons(A,B,C a1,a2,a3,a4)
\tkzDrawPolygons(b1,b2,b3,b4)
\tkzDrawPoints(A,B,C)
\tkzLabelPoints(B,C)
\tkzLabelPoints[above](A)
\end{tikzpicture}
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14.11.2. Method path()

This method builds a path object that follows the boundary of a triangle from point 𝑝1 to point 𝑝2, walking in
counterclockwise (direct) orientation along the triangle’s perimeter.
Syntax: PA.edge = T.ABC:path(zA, zC)
Arguments:

– p1, p2 — two points located on the triangle’s sides

Details:
The method checks that both points lie on the triangle’s boundary using the segment method in_out_segment.
If they belong to the same side, the resulting path is direct. Otherwise, the method follows the triangle in
counterclockwise order, adding intermediate vertices as needed.
This function is useful for tracing polygonal arcs or combining triangle edges with other curves to build filled
shapes.

𝐴 𝐵

𝐶
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15. Class occs

15.1. Description

The occs class models an orthonormal Cartesian coordinate system (OCCS). Its primary use is to transition
from the default coordinate system to one aligned with geometric features of the figure (e.g., a directrix, a major
axis, or the vertex of a conic).
All calculations in this package are performed in a fixed OCCS. For convenience and clarity, this class allows
defining and transforming to a new OCCS using a direction (a line) and a new origin point.

The typical use case is to simplify the coordinates of geometric objects such as conics, by aligning the axes with
their natural directions.

15.2. Creating an occs

An OCCS (orthonormal Cartesian coordinate system) is defined by:

– a line, which sets the direction of the new ordinate axis (the 𝑦-axis), and

– a point, which becomes the new origin.

The abscissa axis (the 𝑥-axis) is automatically computed to be orthogonal to the ordinate axis, ensuring a
right-handed coordinate system.

There are two equivalent ways to create an OCCS:

O.S = occs(L.axis, z.S) (short form, recommended)
O.S = occs:new(L.axis, z.S) (explicit constructor)

The result is stored in the table O under the key "S", representing the OCCS centered at point z.S.

This object can then be used to:

– compute coordinates of points in the new system,

– project points onto the new axes, or

– reconstruct geometric elements aligned with the new frame.

The new abscissa axis is automatically computed to ensure orthonormality.

15.3. Attributes of an occs

Table 13: Attributes of an occs object.
Attribute Description

type Object type name, always "occs"
origin The new origin point
x Point that defines the new 𝑥-axis (abscissa)
y Point that defines the new 𝑦-axis (ordinate)
abscissa Line representing the abscissa axis
ordinate Line representing the ordinate axis

15.3.1. Example: attributes of occs

A few words about the arguments of a new OCCS. The most important is the line that defines the direction
of the new ordinate axis. For a parabola, this direction should point from the directrix to the focus. For a
hyperbola or an ellipse, it should go from the center to the principal focus. The orientation is determined by
the order of the two points used to construct the line: it runs from the first to the second.
If this line is constructed as an orthogonal to another line (as in the example below), then its orientation depends
on the orientation of the original line.
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\directlua{
init_elements()
z.O = point(0, 0)
z.i = point(1, 0)
z.j = point(0, 1)
z.A = point(-1, -1)
z.B = point(4, 2)
L.AB = line(z.A, z.B)
z.S = point(0, 3)
L.axis = L.AB:ortho_from(z.S)
% new occs
O.S = occs(L.axis, z.S)
z.u = O.S.x
z.v = O.S.y
z.ax = O.S.abscissa.pa
z.bx = O.S.ordinate.pa
z.ay = O.S.abscissa.pb
z.by = O.S.ordinate.pb}
\begin{tikzpicture}
\tkzGetNodes
\tkzDrawLines(A,B)
\tkzDrawLines[purple,add=4 and 4](ax,ay bx,by)
\tkzDrawSegments[->,red,thick](O,i O,j)
\tkzDrawSegments[->,purple,thick](S,u S,v)
\tkzLabelSegment[below,sloped,pos=.9](A,B){L.AB the directrix}
\tkzLabelSegment[below,sloped,pos=3](ax,ay){abscissa}
\tkzLabelSegment[below,sloped,pos=5](bx,by){ordinate major\_axis}
\tkzLabelPoints(O,S)
\tkzLabelPoints[left](j,v)
\tkzLabelPoints[below right](i,u)
\end{tikzpicture}
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15.4. Methods of the class occs

This class provides the following methods:

Table 14: occs methods.
Methods Reference

Constructor

occs(dir, origin) Note8; [15.5; 15.3.1]

Methods Returning a Real Number

coordinates(pt) [15.6]

15.5. Method occs(L, pt)

The general creation of an orthonormal coordinate system attached to a line has already been presented [see
15.2].
Here we emphasize the important role of the two points defining the line 𝐿. If these points are swapped, the
resulting coordinate system is not the same: the orientation of the axes is reversed. In every case, the system
is oriented in the forward direction, following the order of the defining points.

𝐴

𝐵

𝑆

𝑂

𝐾

𝑢

𝑣
\directlua{%
z.O = point(0, 0)
z.A = point(0, 1)
z.B = point(4, 2)
z.S = point(1, 3)
L.AB = line(z.A, z.B)
z.K = L.AB:projection(z.S)
O.sys = occs(L.AB, z.S)
z.u, z.v = O.sys.x, O.sys.y}
\begin{tikzpicture}

\tkzGetNodes
\tkzDrawLines[purple](A,B)
\tkzDrawPoints(A,B,S,O,K)
\tkzLabelPoints(A,B,S,O,K,u,v)
\tkzDrawSegments[thick,->](S,u S,v)

\end{tikzpicture}

𝐴

𝐵

𝑆

𝑂

𝐾

𝑢

𝑣

\directlua{%
z.O = point(0, 0)
z.A = point(0, 1)
z.B = point(4, 2)
z.S = point(1, 3)
L.AB = line(z.B, z.A)
z.K = L.AB:projection(z.S)
O.sys = occs(L.AB, z.S)
z.u, z.v = O.sys.x, O.sys.y}
\begin{tikzpicture}

\tkzGetNodes
\tkzDrawLines[purple](A,B)
\tkzDrawPoints(A,B,S,O,K)
\tkzLabelPoints(A,B,S,O,K,u,v)
\tkzDrawSegments[thick,->](S,u S,v)

\end{tikzpicture}

15.6. Method coordinates(pt)

We want to construct the parabola passing through three given points, knowing that the axis of symmetry of
the parabola is parallel to a given line (𝑀𝑁).

1. First, we must check that the three points 𝐴,𝐵,𝐶 are not collinear, and that no two of them lie on the
same line perpendicular to (𝑀𝑁).
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2. Next, we define a reference system (𝑀, ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗𝑀𝑈, ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗𝑀𝑉) attached to the line (𝑀𝑁).

3. In this new system, there exists a unique parabola through the three points. The function parabola(pt,
pt, pt) [see 29.18] computes the coefficients of the quadratic function 𝑦 =𝐴𝑥2+𝐵𝑥+𝐶.

4. To apply this function, we need the coordinates of 𝐴,𝐵,𝐶 in the new system. This is exactly the role of
the method coordinates(pt).

𝐴

𝐵

𝑈𝑉
𝑀

𝑁

𝐶

15.7. Example: Using occs with a parabola

Let us consider a practical example. Suppose we want to compute the intersection points between a parabola
and a line. The parabola is defined by its directrix and focus. In a coordinate system centered at the vertex 𝑆
of the parabola, with the 𝑥-axis parallel to the directrix and passing through 𝑆, the equation of the parabola
becomes

𝑦 = 𝑥2

2𝑝
where 𝑝 is the latus rectum, i.e., the distance from the focus to the directrix.

To determine the intersection points, we first express the equation of the given line in the new coordinate system.
Then, we solve the equation system using 𝑦 = 𝑥2

2𝑝 . Internally, this is handled using two utility functions.

If solutions exist, the result consists of two values 𝑟1 and 𝑟2, which are the abscissas of the intersection points
in the new OCCS. Once the corresponding ordinates are computed, we can either:

– express the coordinates in TikZ directly using a projection onto the new OCCS, or

– geometrically reconstruct the points: for each 𝑟, find the corresponding point 𝑥 on the new 𝑥-axis
(OCCS.abscissa), and use it to locate the point on the parabola.

\directlua{
init_elements()
z.O = point(0, 0)
z.i = point(1, 0)
z.j = point(0, 1)
z.A = point(-1, 0)
z.B = point(5, 4)
L.dir = line(z.A, z.B)
z.F = point(0, 3)
CO.parabola = conic(z.F, L.dir, 1)
PA.curve = CO.parabola:points(-3, 3, 50)
local p = CO.parabola.p
z.P = L.dir:report(p, z.K)
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z.X = PA:point(p)
z.H = L.dir:projection(z.X)
z.K = CO.parabola.K
z.S = CO.parabola.vertex
L.KF = CO.parabola.major_axis
% new occs

O.SKF = occs(L.KF, z.S)
z.u = O.SKF.x
z.v = O.SKF.y
% line a,b

z.a = point(-1, 1)
z.b = point(3, 5)
L.ab = line(z.a, z.b)
% % coordinates in the new occs

X, Y = O.SKF:coordinates(z.F)
Xa, Ya = O.SKF:coordinates(z.a)
Xb, Yb = O.SKF:coordinates(z.b)
% solve in the new occs

local r, s = tkz.line_coefficients(Xa, Ya, Xb, Yb)
r1, r2 = solve_para_line(p, r, s)
z.x = O.SKF.abscissa:report(r1, z.K)
z.y = O.SKF.abscissa:report(r2, z.K)
L1 = L.dir:ortho_from(z.x)
L2 = L.dir:ortho_from(z.y)
z.s1 = intersection(L.ab, L1)
z.s2 = intersection(L.ab, L2)}

\begin{tikzpicture}
\tkzGetNodes
\tkzDrawCoordinates[smooth,orange,thick](PA.curve)
\tkzDrawLines(A,B)
\tkzDrawLines[add = 1 and 1](K,F)
\tkzDrawSegments[add = .5 and .5,blue](a,b)
\tkzDrawSegments[dashed](s1,x s2,y)
\tkzDrawPoints(A,B,F,K,S)
\tkzDrawPoints[blue,size=2](a,b)
\tkzDrawPoints[blue,size=2](s1,s2,x,y)
\tkzLabelPoints[blue](a,b)
\tkzLabelPoints[blue,above left](s1,s2)
\tkzLabelPoints(O,i,u,S,A,B,x,y)
\tkzLabelPoints[left](j,v)
\tkzLabelPoints[right](F,K)
\tkzDrawSegments[->,red,thick](O,i O,j)
\tkzDrawSegments[->,purple,thick](S,u S,v)
\tkzLabelSegment[below,sloped,pos=.7](A,B){Directrix}
\end{tikzpicture}
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16. Class conic

The variable CO holds a table used to store conics. It is optional, and you are free to choose the variable name.
However, using CO is a recommended convention for clarity and consistency. If you use a custom variable (e.g.,
Conics), you must initialize it manually. The init_elements() function reinitializes the CO table if used.

16.1. Preamble

To illustrate some of the methods for working with conics, consider the construction of a parabola defined as
the locus of all centers of circles tangent to a fixed circle and a line.
In the example below, the table points contains the coordinates of these centers. Since TikZ only requires a
list of coordinate pairs enclosed in parentheses, the table is converted accordingly.
The table that defines the circles is slightly more elaborate. It stores, for each circle, both its center and its
point of tangency with the given curve or line. Each entry is a sequence of four coordinates. These sequences
are then concatenated into a string using a comma (”,”) as a separator.
These coordinates are finally read by \foreach, using the expand list option.

Here’s the code. Two paths(tables) are created, one containing the points of the parabola, the other the points
that define the tangent circles. The parabola is obtained using TikZ’s ability to draw a curve from a list of
coordinates.

\directlua{
z.O = point(0, 0)
z.K = point(0, 1)
z.P = point(0, 6)
z.M = point(0, 2)
z.I = point(1, 0)
C.PM = circle (z.P,z.M)
PA.center = path()
PA.through = path()
for t = -0.24, 0.24, 0.004 do

if (t > - 0.002 and t < 0.002) then else
local a = C.PM:point(t)
L.OI = line (z.O, z.I)
L.PA = line (z.P, a)
local c = intersection (L.OI, L.PA)
L.tgt = C.PM:tangent_at (a)
local x = intersection(L.tgt, L.OI)
local o = tkz.bisector(x, a, c).pb
PA.center:add_point(o)
PA.through:add_point(a)

end
end}
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\begin{tikzpicture}[scale =.5]
\tkzGetNodes
\tkzDrawCircles[thick, orange](P,M K,M)
\tkzDrawCirclesFromPaths[draw,orange,thick](PA.center,PA.through)
\tkzDrawCoordinates[smooth,red,ultra thick](PA.center)

\end{tikzpicture}

This class replaces the one dedicated to ellipses. From now on, you can work with parabolas, hyperbolas and
ellipses. The circle is not part of this class. As you’ll see from the examples, ellipses used to be built by TikZ,
now conics are obtained by point-by-point construction. A cloud of points is sent to TikZ, which simply connects
them.

plot[<local options>]coordinates{<coordinate 1><coordinate 2>…<coordinate n>}

is used by the macro \tkzDrawCoordinates. One advantage of this method is that you can easily draw only
part of a conic.

16.2. Creating a conic

The conic class unifies the construction of all classical conic sections: ellipses, parabolas, and hyperbolas. It
supersedes the previously available ellipse class, which is now deprecated.

The most natural and flexible construction method is based on the classical definition using:

– a focus point,

– a directrix (line),

– and an eccentricity value 𝑒 > 0.

CO = conic(z.F, L.dir, e)

Depending on the value of the eccentricity:

– if 𝑒 = 1, the result is a parabola;

– if 𝑒 < 1, an ellipse is constructed;

– if 𝑒 > 1, the result is a hyperbola.

Short form:
The class also supports a short form:

CO = conic(z.F, L.dir, e) -- equivalent to conic:new(...)

Other constructions:
Additional creation methods are also available:

– Bifocal construction using two foci and a constant sum or difference;

– Construction from a center, vertex, and covertex;

– Construction from a general quadratic equation (conic coefficients).

These alternative methods are described in the following sections.
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16.3. Attributes of a conic

Parabolas, hyperbolas, and ellipses share many attributes, though some are specific to ellipses and hyperbolas.
Originally, ellipses were defined using three points: the center, a vertex, and a co-vertex. From now on, conics
are preferably defined by a focus, a directrix, and an eccentricity. The old method remains available, and some
tools allow conversion between both definitions.

The key attributes for this new definition are:

– Fa: the focus,

– directrix: the directrix line,

– e: the eccentricity.

A conic is the locus of all points 𝑃 such that the ratio of the distance to the focus 𝐹 over the distance to the
directrix 𝐿 is constant and equal to 𝑒:

𝑃𝐹
𝑃𝐿

= 𝑒

Depending on the value of 𝑒:

– If 0 < 𝑒 < 1, the conic is an ellipse.

– If 𝑒 = 1, it is a parabola.

– If 𝑒 > 1, it is a hyperbola.

Table 15: Conic attributes.
Attributes Definition Reference

Fa main foyer of the conic
directrix directrix of the conic
major_axis Axis through focal points
minor_axis Axis through focal points
e eccentricity of the conic
type The type is ’conic’
subtype ’parabola’, ’hyperbola’ or ’ellipse’
a Only for hyperbola and ellipse
b Only for hyperbola and ellipse
c Only for hyperbola and ellipse
p semi latus rectum
slope Slope of the line passes through the foci
K Projection of the focus onto the directrix
Fb Second focus for hyperbola and ellipse
vertex main vertex
covertex
Rx Radius from center to vertex
Ry Radius from center to covertex

16.3.1. About attributes of conic

The figure below and the associated table show common attributes and differences according to exentricity
values.

\directlua{
init_elements()
z.A = point(0, 0)
z.B = point(4, -2)
L.dir = line(z.A, z.B)
z.F = point(2, 2)
CO.EL = conic(z.F, L.dir, 0.8)
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CO.PA = conic(z.F, L.dir, 1)
CO.HY = conic(z.F, L.dir, 1.2)
PA.EL = CO.EL:points(0, 1, 40)
PA.PA = CO.PA:points(-5, 5, 40)
PA.HY = CO.HY:points(-5, 5, 40)
z.K = CO.EL.K
z.u, z.v = CO.EL.major_axis:get()
z.x = L.dir:report(-4, z.K)
z.y = L.dir:report(4, z.K)
z.r = (z.F - z.K):orthogonal(-4):at(z.F)
z.s = (z.F - z.K):orthogonal(4):at(z.F)
L.rs = line(z.r, z.s)
z.I_1 = intersection(L.rs, CO.EL)
z.I_2 = intersection(L.rs, CO.PA)
z.I_3, _ = intersection(L.rs, CO.HY)
z.H_1 = CO.EL.directrix:projection(z.I_1)
z.H_2 = CO.PA.directrix:projection(z.I_2)
z.H_3 = CO.HY.directrix:projection(z.I_3)
z.S_2 = CO.PA.vertex
z.F_1 = CO.EL.Fb
z.C_1 = CO.EL.center
z.C_3 = CO.HY.center}

\begin{tikzpicture}[scale=.8]
\tkzGetNodes
\tkzDrawLines(x,y u,v r,s)
\tkzDrawPoints(F,K,I_1,I_2,I_3,S_2)
\tkzDrawPoints(H_1,H_2,H_3,F_1,C_1,C_3)
\tkzLabelPoints(F,K,H_1,H_2,H_3,F_1,C_1,C_3)
\tkzDrawSegments[dashed](I_1,H_1 I_2,H_2)
\tkzDrawSegments[dashed](I_3,H_3)
\tkzLabelPoints[above](I_1,I_2,I_3,S_2)
\tkzDrawCoordinates[smooth](PA.EL)
\tkzDrawCoordinates[smooth](PA.PA)
\tkzDrawCoordinates[smooth](PA.HY)
\tkzLabelSegment[pos=.4](K,F){$h = KF$}
\tkzLabelSegment[sloped,pos=-.2](x,y){%

\texttt{directrix}}
\end{tikzpicture}
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𝐹

𝐾

𝐻1

𝐻2𝐻3

𝐹1

𝐶1

𝐶3

𝐼1

𝐼2 𝐼3𝑆2

ℎ =𝐾𝐹

directrix

The focus 𝐹, the line directrix and
the value of ℎ = 𝐾𝐹 are attributes
common to all three conics. These
conics differ in their eccentricity
𝑒, here 0.8 for the ellipse, 1 for the
parabola and 1.2 for the hyperbola.
The semi latus rectum 𝑝 is equal
to 𝑒 ∗ ℎ and differs depending on the
conic. It is represented by 𝐹𝐼1, 𝐹𝐼2
and 𝐹𝐼3. By definition, 𝑒 = 𝑝

ℎ

16.3.2. Attributes of a parabola

Let

CO.PA = conic(z.F, L.AB, 1)

The focus is 𝐹, accessed via CO.PA.Fa. Since the eccentricity is 1, the conic is a parabola. Unlike ellipses
and hyperbolas, a parabola has only one focus and no center. Its definition line, the directrix, is stored in
CO.PA.directrix, and its type is identified by the attribute CO.PA.subtype = 'parabola'.

The projection of 𝐹 onto the directrix is the point 𝐾, obtained with CO.PA.K. The semi-latus rectum 𝑝 is given by
𝑒 ⋅ℎ, and here 𝑝 = ℎ. The vertex of the parabola, the midpoint of the segment [𝐾𝐹], is stored as CO.PA.vertex.
Unlike ellipses, the parabola does not have a covertex.

In a coordinate system centered at the vertex 𝑆 and aligned with the axis of the parabola, the equation becomes

𝑦 = 𝑥2

2𝑝
. The usual parameters 𝑎, 𝑏, and 𝑐 for conics are not defined here, as they relate to centered conics only.

Two attributes are common to all conics:

– CO.PA.major_axis, the main axis from 𝐾 to 𝐹;

– CO.PA.slope, the angle between this axis and the horizontal.
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𝐹

𝐾

𝐻2

𝐼2

𝑆2
ℎ = 𝑝=𝐾𝐹

𝑝= ℎ =𝐹𝐼2

directrix

ℎ/2

16.3.3. Attributes of a hyperbola

Let

CO.HY = conic(z.F, L.AB, 1.2)

In this case, the eccentricity is greater than 1, so the conic is a hyperbola. As with all conics, the focus is given by
CO.HY.Fa, the directrix by CO.HY.directrix, and the subtype is identified by CO.HY.subtype = 'hyperbola'.

Two specific attributes of hyperbolas are:

– the second focus, CO.HY.Fb,

– the center of the hyperbola, CO.HY.center.

Several key segments characterize the hyperbola:

– 𝑎 =𝐶𝑆 is the distance from the center to a vertex, accessed with CO.HY.a,

– 𝑐 =𝐶𝐹 is the distance from the center to a focus, accessed with CO.HY.c.

The main axis (CO.HY.major_axis) and its slope (CO.HY.slope) are also available, as with all conics.
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𝐸

𝐹

𝐾

𝐻

𝐶

𝐷

𝐺

𝐹 focus

𝐼

𝑆
ℎ =𝐾𝐹

𝑝= 𝐼𝐹= 𝑒∗ℎ

directrix

asymptote

slope =
𝑏
𝑎

𝐶𝑆 = 𝑎
𝐶𝐹 = 𝑐
𝐶𝐸 = 𝑏
slope of asymptote = 𝑏

𝑎
𝐼𝐹 = 𝑝 = 𝑒 ∗ℎ
𝐾𝐹 =ℎ

16.3.4. Attributes of an ellipse

An ellipse shares many attributes with the hyperbola. It is created using the same method, for example:

CO.EL = conic(z.F, L.AB, 0.8)

As usual, the focus is given by CO.EL.Fa, the directrix by CO.EL.directrix, and the subtype is identified by
CO.EL.subtype = 'ellipse'. Since the eccentricity is less than 1, the conic is an ellipse.

Specific attributes include:

– the second focus: CO.EL.Fb,

– the center of the ellipse: CO.EL.center.

Distances used to characterize the ellipse:

– 𝑎 =𝐶𝑆: distance from the center to a vertex, accessed via CO.EL.a,

– 𝑏 =𝐶𝑀: semi-minor axis (perpendicular to the major axis), via CO.EL.b,

– 𝑐 =𝐶𝐹: distance from the center to a focus, via CO.EL.c.

The relationship between these distances for an ellipse is:

𝑐 =√𝑎2−𝑏2

as opposed to the hyperbola, where 𝑐 =√𝑎2+𝑏2.

As for all conics, the major axis is available via CO.EL.major_axis, and its orientation via CO.EL.slope.
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𝐸

𝐹

𝐾

𝐻

𝐶

𝐺

𝐹 focus

𝐼

𝑉

ℎ =𝐾𝐹

𝑝= 𝐼𝐹= 𝑒∗ℎ

directrix

𝐶𝑉 = 𝑎
𝐶𝐹 = 𝑐
𝐶𝐸 = 𝑏
𝐼𝐹 = 𝑝 = 𝑒 ∗ℎ
𝐾𝐹 =ℎ

16.4. Point-by-point conic construction

Let’s take a closer look at the methods used to construct conics. The general approach is to generate a table
of points —with a nearly constant number— to define the curve’s path. This table is then passed to TikZ to
produce the plot.

16.4.1. Parabola construction

The construction method is based on the following geometric property: if a point 𝑀 lies on a parabola, then
the bisector of the segment joining the focus 𝐹 and the projection 𝐻 of 𝑀 onto the directrix is also the angle
bisector of 𝐻𝐹𝑇 and corresponds to the tangent to the parabola at 𝑀.
This principle is used to determine a discrete set of points forming the parabola.
The result is stored in a table called curve, which contains the coordinates of the points on the conic. The
directrix is assumed to coincide with the x-axis. You must specify:

– the starting abscissa,

– the ending abscissa,

– and the number of points to compute.

The name curve is only a suggestion—you may use any name you like for the table.
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\directlua{
init_elements()
z.A = point(0, 1)
z.B = point(4, 3)
z.F = point(2, 6)
L.AB = line(z.A, z.B)
CO.PA = conic(z.F, L.AB, 1)
z.K = CO.PA.K
z.M = CO.PA:point(-2)
z.H = CO.PA.directrix:projection(z.M)
L.FH = line(z.F, z.H)
L.med = L.FH:mediator()
L.orth = CO.PA.directrix:ortho_from(z.H)
z.T = intersection(L.AB, L.med)
PA.curve = CO.PA:points(-5, 5, 50)
z.m = tkz.midpoint(z.H, z.F)}

\begin{tikzpicture}
\tkzGetNodes
\tkzDrawCoordinates[smooth](PA.curve)
\tkzDrawLines[add = .5 and .5](A,B M,T K,F)
\tkzDrawSegments(M,H H,F F,M)
\tkzDrawPoints(F,K,T,M,H)
\tkzLabelPoints(F,K,T,M,H)
\tkzMarkAngles[mark=|](H,M,T T,M,F)
\tkzMarkSegments[mark=|](H,M M,F)
\tkzMarkSegments[mark=|](H,m m,F)
\end{tikzpicture}

𝐹

𝐾

𝑇𝑀

𝐻

16.4.2. Hyperbola construction

Constructing a hyperbola is slightly more involved.
Let 𝐾 be the projection of the focus 𝐹 onto the directrix. The distance 𝐹𝐾 is denoted ℎ, and is used to compute
the center 𝐶 of the hyperbola. Let 𝑒 be the eccentricity. The distance from the focus to the center is given by:

𝑐 = 𝑒2ℎ
𝑒2−1

From this, the distance between the center and a vertex of the hyperbola is:

𝑎 = 𝑒ℎ
𝑒2−1

or equivalently 𝑎 = 𝑐
𝑒

To construct a point on the hyperbola:

– Select a point 𝑇 on the directrix.

– Construct the line (𝐹𝑇) through the focus and 𝑇.

– This line intersects the perpendiculars at 𝐾 and 𝐶 (to the line (𝐹𝐾)) at points 𝐸 and 𝐷 respectively.

– The circle centered at 𝐷 and passing through 𝐸 intersects the perpendicular to the directrix at 𝑇 in a
point 𝑃.

This point 𝑃 lies on the hyperbola.
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𝐶
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𝐸

directrix

𝑃

\directlua{
init_elements()
z.A = point(-2, -1)
z.B = point(4, 0)
L.AB = line(z.A, z.B)
z.F = point(0, 3)
CO.HY = conic(z.F, L.AB, 2)
PA.curve = CO.HY:points(-5, 5, 50)
z.K = CO.HY.K
z.S = CO.HY.vertex
z.O = CO.HY.center
z.X = CO.HY:point(2)
z.T = CO.HY.directrix:report(2, CO.HY.K)
LT = CO.HY.major_axis:ll_from(z.T)
z.u, z.v = LT:get()
LC = CO.HY.minor_axis
LS = LC:ll_from(HY.vertex)
z.D = intersection_ll_(LC.pa, LC.pb, CO.HY.Fa, z.T)
z.E = intersection_ll_(LS.pa, LS.pb, CO.HY.Fa, z.T)
z.P, z.Q = intersection_lc_(LT.pa, LT.pb, z.D, z.E)
z.C = CO.HY.center}
\begin{tikzpicture}
\tkzGetNodes
\tkzDrawCoordinates[smooth,cyan](PA.curve)
\tkzDrawCircle(D,E)
\tkzDrawLines(F,C F,D)
\tkzDrawLines[add = 1 and 1](T,P)
\tkzDrawPoints(C,F,K,S,T,P,D,E)
\tkzLabelPoints(C,F,K,S,T,D,E)
\tkzLabelPoint[below,sloped](A){directrix}
\tkzLabelPoints[above](P)
\tkzDrawSegments(A,K T,B)
\tkzDrawSegments[dashed](S,E K,T C,D)
\end{tikzpicture}
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16.4.3. Ellipse construction

The ellipse can be constructed point by point using an affinity. This transformation is applied to the principal
circle, using the focal axis as the direction of the affinity and a ratio equal to 𝑏/𝑎, where 𝑎 and 𝑏 are the
semi-major and semi-minor axes of the ellipse.
Let 𝑄 be a point on the principal circle, and 𝐻 its projection onto the focal axis. Consider the segment 𝑂𝐴 = 𝑎
on the focal axis, and the segment 𝑂𝐵 = 𝑏 perpendicular to it. Draw the line (𝐴𝐵) and then a line parallel to
it passing through 𝑄. This line intersects the focal axis at point 𝑇.
By construction, the similarity ratio is:

𝑏
𝑎
= 𝐻𝑇

𝐻𝑄
Now, if we reflect 𝑄 over 𝑇, we obtain a new point 𝑄′ such that 𝐻𝑇 =𝐻𝑄′. Hence:

𝐻𝑄′

𝐻𝑄
= 𝑏

𝑎
The point 𝑄′ lies on the ellipse. Repeating this construction for various points 𝑄 on the principal circle gives
the ellipse as the image of the circle under the affinity.
\directlua{
init_elements()
z.Fb = point(3, 0)
z.Fa = point(-3, 2)
local c = tkz.length(z.Fa, z.Fb) / 2
local a = 4
local b = math.sqrt(a ^ 2 - c ^ 2)
local e = c / a
L.focal = line(z.Fa, z.Fb)
z.O = L.focal.mid
L.OFb = line(z.O, z.Fb)
z.K = L.OFb:report(a ^ 2 / c)
z.Ko = ortho_from_(z.K, z.K, z.Fb)
L.dir = line(z.K, z.Ko)
CO.EL = conic(z.Fb, L.dir, e)
PA.curve = CO.EL:points(0, 1, 100)
z.V = CO.EL.vertex
local C = circle(z.O, CO.EL.vertex)
z.A = C:point(0.25)
z.B = L.focal:report(-CO.EL.b, z.O)
z.Q = C:point(0.2)
z.H = L.focal:projection(z.Q)
z.Qp = L.focal:affinity(L.focal:

ortho_from(z.O), b / a, z.Q)
z.T = intersection_ll_(z.Q,

ll_from_(z.Q, z.A, z.B), z.Fb, z.Fa)}
\begin{tikzpicture}
\tkzGetNodes
\tkzDrawCoordinates[smooth](PA.curve)
\tkzDrawLines(Fa,Fb K,Ko)
\tkzDrawLines[add = 2 and 2](K,Ko)
\tkzDrawSegments[dashed](H,Q O,A)
\tkzDrawCircles(O,Q H,T)
\tkzDrawPoints(Fa,Fb,Q,Q',H,V,A,B,O,K)
\tkzDrawSegments[red](A,B Q,T)
\tkzLabelPoints(Fa,Fb,Q,Q',H,V,A,B,O,K)
\tkzLabelSegment(K,Ko){directrix}
\end{tikzpicture}

𝐹𝑎

𝐹𝑏

𝑄

𝑄′

𝐻

𝑉

𝐴

𝐵

𝑂

𝐾

directrix

16.5. Methods of the class conic

The methods previously designed for the (now obsolete) ellipse class have been generalized to the conic class.
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The most natural creation method is now the one based on a focus, a directrix, and the eccentricity.

CO = conic(z.F,L.dir,e)

Depending on the latter, it is easy to distinguish between parabolas, hyperbolas, and ellipses. The bifocal
definition of hyperbolas and ellipses is also available, as well as the one based on three points: the center, a
vertex, and a covertex.

Table 16: Conic methods.
Methods Reference

Constructor

new (pt, L , e) CO = conic: new ( focus, directrix,eccentricity )

Methods Returning a Point

get(i) [16.5.1]
point(t) [16.5.2]

Methods Returning a String

position(pt) [16.5.7]

Methods Returning a Boolean

in_out(pt) [16.5.8]

Methods Returning a Line

tangent_at(pt) [16.5.4]
tangent_from(pt) [16.5.5]
asymptotes() [16.5.23]

orthoptic_curve() [16.5.9]

Methods Returning a Path

path(pt, pt, nb, swap) [16.5.10]
points(ta,tb,nb,<'sawp'>) See [ 16.5.2]

Table 17: Conic functions.
Functions Reference

PA_dir(pt,pt,pt) [16.5.13]
PA_focus(L,pt,pt) [16.5.14]
HY_bifocal(pt,pt,pt or r) [16.5.15]
EL_bifocal(pt,pt,pt or r) [16.5.16]
EL_points(L,pt,pt) [16.5.17]
search_ellipse(s1, s2, s3, s4, s5) [16.5.19]
test_ellipse(pt,t) [16.5.21]
search_center_ellipse(t) [16.5.22]
ellipse_axes_angle(t) [16.5.20]

16.5.1. Method get()

This method retrieves the main characteristic points of a conic. The points returned depend on the subtype of
the conic (ellipse, hyperbola, or parabola), but the calling convention is uniform.

– For a parabola, the defining points are the vertex and the focus.

– For an ellipse or a hyperbola, the defining points are the center and the two foci.

– C:get() returns all defining points of the conic.

– C:get(1) returns the first defining point.
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– C:get(2) returns the second defining point.

– C:get(3) returns the third defining point, if it exists.

More precisely:

– For a parabola, C:get() returns the vertex and the focus.

– For an ellipse or a hyperbola, C:get() returns the center and the two foci.

This method provides a unified way to access the essential points of a conic, independently of its construction
(focus–directrix definition, axis-based construction, etc.). It is particularly useful for composing constructions,
exporting points, or defining derived geometric objects.

16.5.2. Method points

This method generates a set of points lying on the conic. These points can then be used with tkz-euclide,
which, via TikZ’s draw[options] plot coordinates, will render the curve.
The method requires three arguments: the minimum value of the parameter 𝑡, the maximum value, and the
number of intermediate points between these two bounds.

CO = conic(z.F, L.dir, e)
curve = CO:points(ta, tb, nb)

Once the list of points is created, it can be plotted using the macro \tkzDrawCoordinates:

\tkzDrawCoordinates[smooth,red](curve)

Examples with the three types of conics

1. With parabola

𝑡 is the abscissa of a point on the parabola, in an orthonormal frame of reference with origin 𝐾 and based
on the directrix line and focal axis (major_axis).

\directlua{
init_elements()
z.A = point(-2, -1)
z.B = point(4, 0)
z.F = point(1, 3)
L.dir = line(z.A, z.B)
CO.PA = conic(z.F, L.dir, 1)
PA.curve = CO.PA:points(-4, 3, 50)
z.K = CO.PA.K
z.S = CO.PA.vertex
L.AF = line(z.A, z.F)
L.BF = line(z.B, z.F)
z.U = intersection(CO.PA, L.AF)
z.V = intersection(CO.PA, L.BF)
part = CO.PA:points(-4, 3, 50)
z.HU = L.dir:projection(z.U)
z.HV = L.dir:projection(z.V)
local ta = tkz.length(z.HU, z.K)
local tb = tkz.length(z.HV, z.K)
PA.curvered = CO.PA:points(-ta, tb, 20)}
\begin{tikzpicture}
\tkzGetNodes
\tkzDrawCoordinates[smooth](PA.curvered)

tkz-elements AlterMundus



16. Class conic 220

\tkzDrawCoordinates[smooth,red,
thick](PA.curvered)

\tkzDrawLines(A,B K,F)
\tkzDrawPoints(A,B,F,K,S,HU,HV)
\tkzDrawPoints[red](U,V)
\tkzLabelPoints[red](U,V)
\tkzLabelPoints(A,B,F,K,S)
\end{tikzpicture}

𝑈
𝑉

𝐴

𝐵

𝐹

𝐾

𝑆

2. With hyperbola
As with the parabola, the parameter 𝑡 denotes the abscissa of a point on the hyperbola. The directrix is
assumed to be the x-axis. To generate the second branch of the hyperbola, simply include the argument
"swap".

𝐴

𝐵

𝐹

𝐾

𝑆

\directlua{
init_elements()
z.A = point(-2, -1)
z.B = point(4, 0)
L.AB = line(z.A, z.B)
z.F = point(0, 3)
CO.HY = conic(z.F, L.AB, 2)
curve = CO.HY:points(-5, 4, 50)
curveb = CO.HY:points(-5, 4, 50, "swap")
z.K = CO.HY.K
z.S = CO.HY.vertex
z.O = CO.HY.center}
\begin{tikzpicture}
\tkzGetNodes
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\tkzDrawCoordinates[smooth,cyan](curve)
\tkzDrawCoordinates[smooth,cyan](curveb)
\tkzDrawLines(A,B F,K)
\tkzDrawPoints(A,B,F,K,S)
\tkzLabelPoints(A,B,F,K,S)
\end{tikzpicture}

3. With ellipse
This case differs slightly: the parameter 𝑡 is a real number between 0 and 1, representing a fraction of
the angle 𝑀𝐶𝑉 measured in radians, where 𝐶 is the center of the ellipse, 𝑉 a vertex, and 𝑀 a point on
the ellipse. Thus, 𝑡 = 0 and 𝑡 = 1 correspond to the same vertex, 𝑡 = 0.5 gives the opposite vertex, and
𝑡 = 0.25 corresponds to a covertex.
The next example shows how to draw only a portion of the ellipse.

\directlua{
init_elements()
z.A = point(0, 0)
z.B = point(4, 2)
L.dir = line(z.A, z.B)
z.F = point(2, 2)
CO.EL = conic(z.F, L.dir, 0.8)
PA.curve = CO.EL:points(0, 1, 50)
PA.part = CO.EL:points(0.5, 0.75, 50)
z.K = CO.EL.K
z.C = CO.EL.center
z.V = CO.EL.vertex
z.M = CO.EL:point(0.3)}

\begin{tikzpicture}
\tkzGetNodes
\tkzDrawLines(A,B K,F)
\tkzDrawSegments(C,V C,M)
\tkzDrawPoints(A,B,C,F,K,M,V)
\tkzLabelPoints(A,B,C,F,K,M,V)
\tkzDrawCoordinates[smooth](curve)
\tkzDrawCoordinates[smooth,
red,thick](part)

\tkzMarkAngles[mark=||,size=.5](V,C,M)
\end{tikzpicture}

𝐴

𝐵

𝐶

𝐹

𝐾

𝑀

𝑉

16.5.3. Method point(r)

This method defines a point on the conic. Unlike the points method, it takes only a single argument—the
abscissa of the point. See also: Sections 16.5.4, 16.4.1, and 16.4.2 for related uses.
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16.5.4. Method tangent_at

𝐾

𝐹

\directlua{
init_elements()
z.A = point(0, 0)
z.B = point(4, -2)
L.dir = line(z.A, z.B)
z.F = point(2, 2)
CO.EL = conic(z.F, L.dir, 0.8)
CO.PA = conic(z.F, L.dir, 1)
CO.HY = conic(z.F, L.dir, 1.2)
PA.EL = CO.EL:points(0, 1, 50)
PA.PA = CO.PA:points(-5, 5, 50)
PA.HY = CO.HY:points(-5, 5, 50)
z.X_1 = CO.EL:point(0.3)
z.X_2 = CO.PA:point(3)
z.X_3 = CO.HY:point(3)
T1 = CO.EL:tangent_at(z.X_1)
T2 = CO.PA:tangent_at(z.X_2)
T3 = CO.HY:tangent_at(z.X_3)
z.u1, z.v1 = T1:get()
z.u2, z.v2 = T2:get()
z.u3, z.v3 = T3:get()
z.K = CO.PA.K}
\begin{tikzpicture}
\tkzGetNodes
\tkzDrawLines[cyan](A,B K,F)
\tkzDrawCoordinates[smooth](PA.EL)
\tkzDrawCoordinates[smooth](PA.PA)
\tkzDrawCoordinates[smooth](PA.HY)
\tkzDrawLines[add = 2 and 2,red](u1,v1)
\tkzDrawLines[add = 2 and 2,red](u2,v2)
\tkzDrawLines[add = 2 and 2,red](u3,v3)
\tkzDrawPoints[red](X_1,X_2,X_3)
\tkzDrawPoints(K,F)
\tkzLabelPoints(K,F)
\end{tikzpicture}
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16.5.5. Method tangent_from

This method computes the two tangents drawn from a given point to the conic. It returns the contact points of
the tangents on the curve as two distinct points. This is useful for illustrating geometric constructions involving
external tangents to ellipses, parabolas, or hyperbolas.

\directlua{
init_elements()
z.A = point(0, 0)
z.B = point(2, -1)
L.dir = line(z.A, z.B)
z.F = point(2, 2)
CO.EL = conic(z.F, L.dir, 0.8)
CO.PA = conic(z.F, L.dir, 1)
CO.HY = conic(z.F, L.dir, 1.2)
PA.EL = CO.EL:points(0, 1, 50)
PA.PA = CO.PA:points(-5, 6, 50)
PA.HY = CO.HY:points(-5, 7, 50)
R1, R2 = CO.EL:tangent_from(z.B)
S1, S2 = CO.PA:tangent_from(z.B)
T1, T2 = CO.HY:tangent_from(z.B)
z.u1, z.v1 = R1:get()
z.u2, z.v2 = R2:get()
z.r1, z.s1 = S1:get()
z.r2, z.s2 = S2:get()
z.x1, z.y1 = T1:get()
z.x2, z.y2 = T2:get()
z.K = CO.PA.K}
\begin{tikzpicture}
\tkzGetNodes
\tkzDrawLines[cyan](A,B K,F)
\tkzDrawCoordinates[smooth](PA.EL)
\tkzDrawCoordinates[smooth](PA.PA)
\tkzDrawCoordinates[smooth](PA.HY)
\tkzDrawLines[add = 0 and .25,red](B,v1 B,v2 B,s1 B,s2 B,y1 B,y2)
\tkzDrawPoints[red](v1,v2,s1,s2,y1,y2)
\tkzDrawPoints(K,F,B)
\tkzLabelPoints(K,F,B)

\end{tikzpicture}
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𝐾

𝐹

𝐵

16.5.6. Method point

This method is similar to the point method found in other classes, with specific differences depending on the
conic type. The parameter 𝑡 typically represents a fraction of a given distance and usually lies between 0 and 1.
However, this interpretation does not apply to parabolas and hyperbolas: in these cases, 𝑡 corresponds to the
abscissa on the directrix of a point on the curve.
For ellipses, 𝑡 has the same interpretation as in the case of circles: it defines a point on the associated principal
circle. The corresponding point on the ellipse is then obtained by an affine transformation with ratio 𝑏

𝑎 , where
𝑎 and 𝑏 are the semi-major and semi-minor axes, respectively.
See also Section 16.5.4 for related information.
A few remarks on the following example: it illustrates how an ellipse can be constructed from its principal circle
via an affinity. For instance, the segment 𝐻𝑄′ = 𝑏

𝑎𝐻𝑄, and the angle relation tan(𝛽) = 𝑏
𝑎 tan(𝛼) also holds.
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\directlua{
init_elements()
z.Fb = point(3, 0)
z.Fa = point(-3, 2)
local c = tkz.length(z.Fa, z.Fb) / 2
local a = 4
local b = math.sqrt(a ^ 2 - c ^ 2)
local e = c / a
L.FaFb = line(z.Fa, z.Fb)
z.C = L.FaFb.mid
L.CFb = line(z.C, z.Fb)
z.K = L.CFb:report(a ^ 2 / c)
z.Ko = ortho_from_(z.K, z.K, z.Fb)
L.dir = line(z.K, z.Ko)
CO.EL = conic(z.Fb, L.dir, e)
PA.curve = CO.EL:points(0, 1, 100)
z.X = CO.EL.vertex
C.X = circle(z.C, z.X)
z.Q = C.X:point(0.15)
z.H = L.FaFb:projection(z.Q)
z.Qp = L.FaFb:affinity(L.FaFb:
ortho_from(z.C), b / a, z.Q)}
\begin{tikzpicture}
\tkzGetNodes
\tkzDrawCoordinates[smooth](PA.curve)
\tkzDrawLines(Fa,Fb K,Ko)
\tkzDrawLines[add = 2 and 2](K,Ko)
\tkzDrawCircles(C,Q)
\tkzDrawSegments[dashed](C,Q C,Q' H,Q)
\tkzDrawPoints(Fa,Fb,C,X,Q,Q',H)
\tkzLabelPoints(Fa,Fb,C,X,Q,Q',H)
\tkzLabelAngle(Fb,C,Q'){$\beta$}
\tkzMarkAngle[size=.8](Fb,C,Q')
\tkzLabelAngle[pos=1.5](Fb,C,Q){$\alpha$}
\tkzMarkAngle[size=1.3](Fb,C,Q)

\end{tikzpicture}

𝐹𝑎

𝐹𝑏

𝐶

𝑋

𝑄

𝑄′

𝐻

𝛽 𝛼

16.5.7. Method position(pt[,EPS])

This method determines the relative position of a point with respect to a conic.

It takes a point pt and an optional tolerance EPS. If omitted, the global tolerance tkz.epsilon is used.

The method returns one of the following strings:

– "IN" — the point lies in the interior region;

– "ON" — the point lies on the conic (within tolerance);

– "OUT" — the point lies in the exterior region.

The behaviour depends on the conic type:

– Ellipse (𝑒 < 1) — interior region is bounded;

– Parabola (𝑒 = 1) — interior is the convex side;

– Hyperbola (𝑒 > 1) — interior corresponds to the region between the two branches.

Compatibility note: If a boolean test is required (for example in legacy code), one may use:

CO:position(P) = "OUT"
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which is true for both "IN" and "ON".

Example:
\directlua{
init_elements()
z.A = point(0,0)
z.B = point(4,-2)
L.dir = line(z.A,z.B)
z.F = point(2,2)

CO.EL = conic(z.F, L.dir, 0.8)
CO.PA = conic(z.F, L.dir, 1.0)
CO.HY = conic(z.F, L.dir, 1.2)

PA.EL = CO.EL:points(0,1,60)
PA.PA = CO.PA:points(-5,5,60)
PA.HY = CO.HY:points(-5,5,60)

z.L = point(-2,4)
z.M = point(-1,5)
z.N = point(0,6)
z.O = point(1,7)

Lel = CO.EL:position(z.L)
Lpa = CO.PA:position(z.L)
Lhy = CO.HY:position(z.L)

Mel = CO.EL:position(z.M)
Mpa = CO.PA:position(z.M)
Mhy = CO.HY:position(z.M)

Nel = CO.EL:position(z.N)
Npa = CO.PA:position(z.N)
Nhy = CO.HY:position(z.N)

Oel = CO.EL:position(z.O)
Opa = CO.PA:position(z.O)
Ohy = CO.HY:position(z.O)
}

𝐿:(OUT;OUT;OUT)

𝑀:(OUT;OUT;IN)

𝑁:(OUT;IN;IN)

𝑂:(IN;IN;IN)

16.5.8. Method in_out; Deprecated

This method is kept for backward compatibility.

16.5.9. Method orthoptic

In curve geometry, the orthoptic of a conic is the set of points from which two tangents to the curve intersect at
a right angle. For a parabola, the orthoptic is simply the directrix. For ellipses and hyperbolas, the orthoptic
is a circle—but in the case of the hyperbola, this holds only if the eccentricity lies between 1 and √2. 9

9 When the eccentricity equals √2, the hyperbola is rectangular (equilateral). In an orthonormal coordinate system, its asymptotes then
have equations 𝑦= 𝑥 and 𝑦=−𝑥.
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\directlua{
init_elements()
z.A = point(0, 1)
z.B = point(4, 3)
z.F = point(2, 6)
L.AB = line(z.A, z.B)
CO.PA = conic(z.F, L.AB, 1)
PA.curve = CO.PA:points(-5, 5, 50)
z.K = CO.PA.K
z.S = CO.PA.vertex
z.M = CO.PA:point(-3)
z.H = CO.PA.directrix:projection(z.M)
L.FH = line(z.F, z.H)
L.med = L.FH:mediator()
z.P = intersection(L.AB, L.med)
z.N = CO.PA:tangent_from(z.P).pb
D = CO.PA:orthoptic()
z.v = D:point(0.75)
T1, T2 = CO.PA:tangent_from(z.v)
z.t1 = T1.pb
z.t2 = T2.pb}
\begin{tikzpicture}
\tkzGetNodes
\tkzDrawCoordinates[smooth,

thick,purple](PA.curve)
\tkzDrawLines[add = 0 and .2](v,t1

v,t2 P,N)
\tkzDrawLines[add = .5 and .5](A,B

M,P K,F)
\tkzDrawSegments(M,H H,F F,M)
\tkzDrawPoints(F,K,P,M,H,v,t1,t2,S,N)
\tkzLabelPoints(K,P,M,H,S)
\tkzLabelPoints[right](F,N)
\tkzMarkAngles[mark=||](H,M,P P,M,F)
\tkzMarkSegments[mark=x](H,M M,F)
\tkzMarkSegments[mark=|](F,S K,S)
\end{tikzpicture}

𝐾
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16.5.10. Method path(pt, pt, nb, mode, dir)

The conic class provides a method path that creates a path object representing a portion of the conic between
two given points (an arc of conic).

Syntax: PA.arc = CO.myconic:path(zA, zB, 40, "swap")
Arguments:

– za, zb — two points lying on the conic.

– nb — number of interpolation steps (default: 20).

– mode — optional string:
– omitted or "direct" (default): traces the shortest arc (for ellipses).
– "swap": selects the complementary arc (other part of the ellipse).

– dir — optional orientation for ambiguous cases
In most cases, the points za and zb determine a unique arc of the conic. However, when the two points are
opposite with respect to the center (for instance, on an ellipse), two different arcs of equal length exist.
In such cases, the optional argument can be used to select the desired direction:

– "ccw" (counterclockwise) — the arc is traced in the direct, or positive, direction.
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– "cw" (clockwise) — the arc is traced in the opposite, or negative, direction.

In general use, this parameter can be omitted.

Details:
Internally, the method computes the conic parameter 𝑡 at za and zb using get_t_from_point(z). For ellipses,
this parameter is normalized in [0,1) (one turn). For parabolas and hyperbolas, it is not periodic.
A linear interpolation of 𝑡 produces intermediate points on the conic:

𝑡𝑖 = 𝑡𝑎+
𝑖
𝑛𝑏

(𝑡𝑏−𝑡𝑎)

For ellipses specifically:

– the angle/parameter is taken modulo 1;

– in "direct" mode, the interpolation follows the shortest arc between the two points;

– in "swap" mode, the complementary arc is used (the same endpoints, but the other part of the ellipse);

– if the points are exactly opposite (Δ𝑡 =±0.5), the option dir = "cw" or "ccw" can be used to choose the
direction.

-- Example: parabola
C = conic(z.F, L.directrix, 1)
PA.arc = C:path(z.A, z.B, 100)

-- Example: ellipse, complementary arc
E = conic(z.F1, z.F2, 0.6) -- an ellipse
PA.arc1 = E:path(z.A, z.B, 80, "direct") -- shortest arc
PA.arc2 = E:path(z.A, z.B, 80, "swap") -- other arc

To draw the resulting path with TikZ:

\tkzDrawCoordinates[smooth]
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\directlua{
init_elements()
z.A = point(0, 0)
z.B = point(4, 2)
L.dir = line(z.A, z.B)
z.F = point(2, 2)
CO.EL = conic(z.F, L.dir, 0.8)
PA.curve = CO.EL:points(0, 1, 50)
z.M = CO.EL:point(0.95)
z.N = CO.EL:point(0.15)
z.P = CO.EL:point(0.4)
z.Q = CO.EL:point(0.7)
PA.parta = CO.EL:path(z.M, z.N, 100, "swap")
PA.partb = CO.EL:path(z.P, z.Q, 100)
L.PM = line(z.P, z.M)
L.QN = line(z.Q, z.N)
z.I = intersection(L.PM, L.QN)
L.NI = line(z.N, z.I)
L.IM = line(z.I, z.M)
L.IP = line(z.I, z.P)
L.QI = line(z.Q, z.I)
PA.zone1 = CO.EL:path(z.M, z.N, 50, "swap")

+ L.NI:path(2) + L.IM:path(2)
PA.zone2 = CO.EL:path(z.P, z.Q, 50, "swap")

+ L.QI:path(2) + L.IP:path(2)
}
\begin{tikzpicture}[ scale = 1.2]
\tkzGetNodes
\tkzDrawCoordinates[fill = green!10](PA.zone1)
\tkzDrawCoordinates[fill = green!10](PA.zone2)
\tkzDrawCoordinates[smooth](PA.curve)
\tkzDrawCoordinates[smooth,red,thick](PA.partb)
\tkzDrawCoordinates[smooth,blue,thick](PA.parta)
\tkzDrawSegments(P,M Q,N)
\tkzDrawPoints(M,N,P,Q,I)
\end{tikzpicture}

Example with parabola
This example shows the case of a parabola. It would be the same for a hyperbola ( the ”swap” option is not yet
authorized).

\directlua{
init_elements()
z.A = point(0, 0)
z.B = point(4, 2)
L.dir = line(z.A, z.B)
z.F = point(2, 2)
CO.EL = conic(z.F, L.dir, 1)
PA.curve = CO.EL:points(-2, 2, 50)
z.P = CO.EL:point(-1.75)
z.Q = CO.EL:point(1.5)
PA.part = CO.EL:path(z.P, z.Q, 100)
}
\begin{tikzpicture}
\tkzGetNodes
\tkzDrawCoordinates[smooth](PA.curve)
\tkzDrawCoordinates[smooth,red,thick](PA.part)
\tkzDrawPoints(P,Q)
\end{tikzpicture}

16.5.11. Intersection: Line and Conic

Additional details can be found in Section 27, in particular Subsection 27.5.
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The following example illustrates how to compute the intersection between a straight line and each of the three
types of conics. As with other intersection methods, there is no need to specify the type of conic explicitly—the
package will determine the appropriate class automatically. Currently, intersections are only supported between
straight lines and conics.

\directlua{
init_elements()
z.A = point(0, 0)
z.B = point(4, -2)
L.dir = line(z.A, z.B)
z.F = point(2, 2)
CO.EL = conic(z.F, L.dir, 0.8)
CO.PA = conic(z.F, L.dir, 1)
CO.HY = conic(z.F, L.dir, 1.2)
PA.EL = CO.EL:points(0, 1, 50)
PA.PA = CO.PA:points(-5, 5, 50)
PA.HY = CO.HY:points(-5, 5, 50)
z.K = CO.EL.K
z.u, z.v = CO.EL.major_axis:get()
z.x = L.dir:report(-3, z.K)
z.y = L.dir:report(3, z.K)
z.r = point(0, 4)
z.s = point(4, 1)
L.rs = line(z.r, z.s)
z.u_1, z.u_2 = intersection(L.rs, CO.EL)
z.v_1, z.v_2 = intersection(L.rs, CO.PA)
z.w_1, z.w_2 = intersection(L.rs, CO.HY)}
\begin{tikzpicture}
\tkzGetNodes
\tkzDrawCoordinates[smooth](PA.EL)
\tkzDrawCoordinates[smooth](PA.PA)
\tkzDrawCoordinates[smooth](PA.HY)
\tkzDrawLines[add =.5 and .5](r,s u,v x,y)
\tkzDrawPoints[red](u_1,u_2,v_2,v_1,w_1,w_2)
\end{tikzpicture}

16.5.12. Useful Tools

This section presents utility functions for retrieving key geometric elements of a conic: its focus, directrix, and
eccentricity.

16.5.13. Function PA_dir

This function computes the directrix of a parabola, given its focus and two points on the curve. The method
involves constructing circles centered at the two given points and passing through the focus. The common
tangents to these two circles correspond to the possible directrices of the parabola—two solutions exist.
To obtain the second solution, simply reverse the order of the return values: replace _, L.dir with L.dir, _.

tkz-elements AlterMundus



16. Class conic 231

\directlua{
init_elements()
z.A = point(0, 1)
z.B = point(5, 2)
z.F = point(2, -1)
_, L.dir = PA_dir(z.F, z.A, z.B)
CO.PA = conic(z.F, L.dir, 1)
PA.curve = CO.PA:points(-5, 5, 50)
z.T, z.Tp = L.dir:get()}
\begin{tikzpicture}[scale = .5]
\tkzGetNodes
\tkzDrawCoordinates[smooth,

cyan](PA.curve)
\tkzDrawCircles(A,F B,F)
\tkzDrawPoints(A,B,F,T,T')
\tkzDrawLine(T,T')
\tkzLabelPoints(A,B,F,T,T')
\end{tikzpicture}

𝐴

𝐵

𝐹
𝑇

𝑇′

16.5.14. Function PA_focus

This function computes the focus of a parabola, given its directrix and two points on the curve.
The method is based on constructing two circles, each centered at one of the given points and tangent to the
directrix. If such a construction is possible, the focus corresponds to one of the intersection points of these two
circles.

\directlua{
init_elements()
z.A = point(0, 1)
z.B = point(4, 2)
z.u = point(2, -1)
z.v = point(-2, 0)
L.dir = line(z.u, z.v)
z.hA = L.dir:projection(z.A)
z.hB = L.dir:projection(z.B)
z.F, z.G = PA_focus(L.dir, z.A, z.B)
CO.PA = conic(z.F, L.dir, 1)
PA.curve = CO.PA:points(-5, 5, 50)}
\begin{tikzpicture}
\tkzGetNodes
\tkzDrawCoordinates[smooth,cyan](PA.curve)
\tkzDrawCircles(A,hA B,hB)
\tkzDrawLines(u,v)
\tkzDrawPoints(A,B,u,v,hA,hB,F,G)
\tkzLabelPoints(A,B,F,G,u,v)

\end{tikzpicture}

𝐴

𝐵
𝐹

𝐺

𝑢

𝑣

16.5.15. Function HY_bifocal

For the hyperbola, this is currently the only available tool, and it relies on the bifocal definition. The inputs
are the two foci, along with either the semi-major axis 𝑎 (i.e., the distance from the center to a vertex), or a
point lying on the hyperbola.
The method proceeds by applying standard formulas that characterize a hyperbola to compute its main geometric
attributes.
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\directlua{
init_elements()
z.F = point(1, -1)
z.G = point(4, 3)
z.M = point(6, 2)
z.C = tkz.midpoint(z.F,z.G)
CO.HY = conic(HY_bifocal(z.G, z.F, z.M))
PA.curve = CO.HY:points(-3, 3, 50)
z.K = CO.HY.K
PA.curveb = CO.HY:points(-3, 3, 50, "swap")}

\begin{tikzpicture}[scale = .5]
\tkzGetNodes
\tkzDrawCoordinates[smooth,red](PA.curve)
\tkzDrawCoordinates[smooth,red](PA.curveb)
\tkzDrawSegments[dashed](M,F M,G)
\tkzDrawLine(F,G)
\tkzDrawPoints[red](M)
\tkzDrawPoints(C,F,G,K)
\tkzLabelPoints(C,F,G,K)
\end{tikzpicture}

𝐶

𝐹

𝐺

𝐾

16.5.16. Function EL_bifocal

For the ellipse, two methods are available. The first one, EL_bifocal, follows the same principle as for the
hyperbola: it uses the bifocal definition of the ellipse.
This function takes as input the two foci and either the semi-major axis 𝑎 or a point on the ellipse. The main
attributes of the ellipse are then computed using the standard bifocal relationships.

\directlua{
init_elements()
z.F = point(1, -1)
z.G = point(4, 3)
z.M = point(2, 4)
z.C = tkz.midpoint(z.F, z.G)
local a = (tkz.length(z.F, z.M) + tkz.length(z.G, z.M)) / 2
CO.EL = conic(EL_bifocal(z.F, z.G, z.M))
PA.curve = CO.EL:points(0, 1, 100)
L.dir = CO.EL.directrix
z.K = CO.EL.K
z.Kp = z.C:symmetry(z.K)
z.u, z.v = CO.EL.minor_axis:get()
z.r, z.s = CO.EL.directrix:get()}
\begin{tikzpicture}[scale = .5]
\tkzGetNodes
\tkzDrawCoordinates[smooth](PA.curve)
\tkzDrawLines[add = .5 and .5](K,K' u,v r,s)
\tkzDrawSegments[dashed](M,F M,G)
\tkzDrawPoints(C,F,K,K',G,M)
\tkzLabelPoints(C,F,K,K',G,M)
\end{tikzpicture}
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𝐶

𝐹

𝐾

𝐾′

𝐺

𝑀

16.5.17. Function EL_points(pt, pt, pt)

The second method corresponds to the classical approach based on the center, a vertex, and a covertex of the
ellipse. The function EL_points takes these three points as arguments and computes all necessary attributes of
the ellipse.
This approach replaces older constructions that manually derived parameters step by step—those lines have
now been condensed into this single function.
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\directlua{
init_elements()
z.C = point(1, -1)
z.V = point(4, 3)
z.W = (z.C - z.V):orthogonal(3):at(z.C)
local a = tkz.length(z.C, z.V)
local b = tkz.length(z.C, z.W)
local c = math.sqrt(a ^ 2 - b ^ 2)
local e = c / a
axis = line(z.C, z.V)

% foci
z.F = axis:report(c, z.C)
z.G = z.C:symmetry(z.F)

% directrix
z.K = axis:report(b ^ 2 / c, z.F)
z.Kp = axis:report(-b ^ 2 / c, z.G)

% major_axis
z.u = (z.C - z.K):orthogonal(2):at(z.K)
z.v = (z.C - z.K):orthogonal(-2):at(z.K)
L.dir = line(z.u, z.v)

% axis:ortho_from (z.K)
z.r = (z.C - z.Kp):orthogonal(2):at(z.Kp)
z.s = (z.C - z.Kp):orthogonal(-2):at(z.Kp)

% CO = conic(z.F,L.dir,e)
CO.EL = conic(EL_points(z.C, z.V, z.W))
PA.curve = CO.EL:points(0, 1, 100)}
\begin{tikzpicture}[gridded]
\tkzGetNodes
\tkzDrawCoordinates[smooth](PA.curve)
\tkzDrawLines(u,v r,s K,K')
\tkzDrawLine(C,V)
\tkzDrawPoints(V,W,C,F,K,K',G)
\tkzLabelPoints(V,W,C,F,K,K',G)
\end{tikzpicture}

𝑉

𝑊

𝐶

𝐹

𝐾

𝐾′

𝐺

16.5.18. Function EL_radii(pt, ra, rb, slope)

This function defines an ellipse from its center (pt), its two radii (𝑟𝑎 and 𝑟𝑏), and the slope of its principal axis.
Unlike the previous method, where the inclination was implicitly determined from the positions of the center
and a vertex, here the slope must be explicitly provided as an argument.
This approach is useful when the ellipse is defined by its geometric parameters rather than specific points on
the curve.
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𝐴 𝐵

𝐶

𝐻𝑏

𝐻𝑐

𝐻𝑎

\directlua{
z.A = point(0, 0)
z.B = point(6, 0)
z.C = point(1, 5)
T.ABC = triangle(z.A, z.B, z.C)
z.H = T.ABC.orthocenter
z.O = T.ABC.circumcenter
T.orthic = T.ABC:orthic()
z.K = T.ABC:symmedian_point()
z.Ha, z.Hb, z.Hc = T.orthic:get()
z.a, z.b, z.c = T.ABC:tangential():get()
z.p, z.q, z.r = T.ABC:circumcevian(z.H):get()
z.Sa, z.Sb = z.K:symmetry(z.Ha,z.Hb)
local coefficients = search_ellipse("Ha", "Hb", "Hc", "Sa", "Sb")
local center, ra, rb, angle = ellipse_axes_angle(coefficients)
CO.EL = conic(EL_radii(center, ra, rb, angle))
% or CO.EL = conic(EL_radii(ellipse_axes_angle(coefficients)))
PA.curve = CO.EL:points(0, 1, 100)}

\begin{center}
\begin{tikzpicture}[gridded,scale =1.20]
\tkzGetNodes
\tkzDrawCoordinates[smooth,red](PA.curve)
\tkzDrawPolygons[red](A,B,C)
\tkzDrawPoints(A,B,C,K,Ha,Hb,Hc)
\tkzDrawSegments[red](C,Hc B,Hb A,Ha)
\tkzDrawPolygons[blue](Ha,Hb,Hc)
\tkzLabelPoints(A,B)
\tkzLabelPoints[above](C)
\tkzLabelPoints[font=\small,left](Hb)
\tkzLabelPoints[font=\small](Hc)
\tkzLabelPoints[font=\small](Ha)

\end{tikzpicture}
\end{center}

16.5.19. Function search_ellipse(s1, s2, s3, s4, s5)

This function, which will eventually be renamed five_points, is currently limited to ellipses.
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Given five points lying on an ellipse, it computes the coefficients of the general conic equation

𝑓(𝑥,𝑦) = 𝐴𝑥2+𝐵𝑥𝑦+𝐶𝑦2+𝐷𝑥+𝐸𝑦+𝐹,

by solving a linear system using Gauss–Jordan elimination. The sixth coefficient 𝐹 is fixed to 1, reducing the
number of unknowns to five.
The arguments are the *names* of the points (as strings), not the points themselves. The method builds a
linear system where each point satisfies the equation above, then solves it to find the values of 𝐴,𝐵,𝐶,𝐷,𝐸.
The results are stored in a table, indexed by the point names. You can retrieve the coefficients manually, as
shown in the example, but functions using this output can also directly access the table, making it easier to
work with.

A = 4.047619047619
B = -5.25
C = 3.6904761904762
D = -4.1190476190476
E = -6.5
F = 1

\directlua{
z.A = point(4, 3)
z.D = point(0.2, 2)
z.C = point(0.4, 0)
z.B = point(3, 1.5)
z.E = point(2, 4)
local coefficients = search_ellipse("A", "B", "C", "D", "E")
local A, B, C, D, E, F =

coefficients.A, coefficients.B,
coefficients.C, coefficients.D,
coefficients.E, coefficients.F

tex.print(" A = "..A)
tex.print('\\\\')
tex.print("B = "..B)
tex.print('\\\\')
tex.print("C = "..C)
tex.print('\\\\')
tex.print("D = "..D)
tex.print('\\\\')
tex.print("E = "..E)
tex.print('\\\\')
tex.print("F = "..F)}

16.5.20. Function ellipse_axes_angle(t)

This function complements the previous one. Once the general equation of the ellipse has been determined, it
becomes necessary to extract key geometric characteristics—such as the center, the radii, and the inclination of
the principal axis—in order to work with the ellipse object.
To retrieve these attributes, simply pass the table of coefficients (as returned by search_ellipse) to this
function. It will compute and return all the necessary parameters for further use.

𝐶

𝐷

𝐴

𝐵

𝐸

𝑊

\directlua{
init_elements()
z.A = point(3, 3)
z.D = point(0.2, 2)
z.C = point(0.4, 0)
z.B = point(3, 1)
z.E = point(2, 4)
local coefficients = search_ellipse("A", "B", "C", "D", "E")
local center, ra, rb,
angle = ellipse_axes_angle(coefficients)
z.W = center
CO.EL = conic(EL_radii(center, ra, rb, angle))
PA.curve = CO.EL:points(0, 1, 100)}
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16.5.21. Function test_ellipse(pt, t)

This function checks whether a given point pt lies on the ellipse whose general equation is defined by the
coefficients stored in table t.
It evaluates the equation

𝑓(𝑥,𝑦) = 𝐴𝑥2+𝐵𝑥𝑦+𝐶𝑦2+𝐷𝑥+𝐸𝑦+𝐹

at the coordinates of the point, using the values from the table t.
This is particularly useful for verifying whether a point satisfies the equation of a previously computed ellipse.
For example, the function can be used to test a point against the ellipse defined by the equation

2𝑥2+𝑥𝑦+𝑦2−5𝑥−2𝑦+1= 0.

A on the ellipse ?yes

𝐴

𝑊

\directlua{
init_elements()
coefficients = {A = 2, B = 1, C = 1, D = -5, E = -

2, F = 1}
z.A = point(0, 1)
if test_ellipse(z.A,coefficients)==0 then
answer = "yes" end

tex.print("A on the ellipse ?"..answer)
local center, ra, rb,
angle = ellipse_axes_angle(coefficients)
z.W = center
CO.EL = conic(EL_radii(center, ra, rb, angle))
PA.curve = CO.EL:points(0, 1, 100)}

16.5.22. Function search_center_ellipse(t)

This function computes the center of an ellipse from its general equation. The argument t is a table containing
the coefficients 𝐴,𝐵,𝐶,𝐷,𝐸,𝐹 of the conic equation. The center is obtained by solving the system of equations
corresponding to the partial derivatives 𝜕𝑓/𝜕𝑥 = 0 and 𝜕𝑓/𝜕𝑦 = 0.

𝑊

\directlua{
coefficients = {A = .75, B = 1, C = 2, D = -5, E = -4, F = 4}
local center = search_center_ellipse(coefficients)
z.W = center
local c, ra, rb,
angle = ellipse_axes_angle(coefficients)
CO.EL = conic(EL_radii(center, ra, rb, angle))
cPA.urve = CO.EL:points(0, 1, 100)}

16.5.23. Method asymptotes()

This method computes the asymptotes of a conic when the conic is a hyperbola. For other types of conics
(ellipse or parabola), asymptotes are not defined and an error is raised.

Description: This method computes the asymptotes of a conic when the conic is a hyperbola. For other
types of conics (ellipse or parabola), asymptotes are not defined and an error is raised.

Let ℋ be a hyperbola with center 𝑂, semi-major axis 𝑎 and semi-minor axis 𝑏. The asymptotes of ℋ are the
two straight lines passing through the center 𝑂 and having slopes ± 𝑏

𝑎 with respect to the principal axis.
The method constructs these asymptotes geometrically:

– a point 𝑃 is computed on the transverse axis of the hyperbola,

– two directions orthogonal to the principal axis and scaled by 𝑏 are constructed at 𝑃,

– the corresponding points are symmetrized with respect to the center in order to define two straight lines.
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Syntax:

L.a1, L.a2 = C:asymptotes()

Parameters: None.
Return values:
If the conic is an hyperbola, the method returns two objects of type line:

– L.a1: first asymptote,

– L.a2: second asymptote.

If the conic is not an hyperbola, an error is raised.
Example:

𝐴

𝐵

𝐹

𝐾

𝑆

\directlua{
init_elements()
z.A = point(-2, -1)
z.B = point(4, 0)
L.AB = line(z.A, z.B)
z.F = point(0, -3)
CO.HY = conic(z.F, L.AB, 2)
curve = CO.HY:points(-5, 5, 50)
curveb = CO.HY:points(-5, 5, 50, swap)
z.K = CO.HY.K
z.S = CO.HY.vertex
z.O = CO.HY.center
z.X = CO.HY:point(1)
L.A1, L.A2 = CO.HY:asymptotes()
z.u1, z.v1 = L.A1:get()
z.u2, z.v2 = L.A2:get()

}
\begin{tikzpicture}
\tkzGetNodes
\tkzDrawCoordinates[smooth,cyan](curve)
\tkzDrawCoordinates[smooth,cyan](curveb)
\tkzDrawPoint[mark=ball,ball color=red](X)
\tkzDrawLines[purple](A,B F,K)
\tkzDrawLines[red,thick,add=0 and 1](u1,v1 u2,v2)
\tkzDrawPoints(A,B,F,K,S)
\tkzLabelPoints(A,B,F,K,S)
\end{tikzpicture}
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Remark: The asymptotes are returned as infinite straight lines. They are independent of the chosen parametriza-
tion of the hyperbola and depend only on its geometric definition.
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17. Class quadrilateral

The variable Q holds a table used to store quadrilaterals. It is optional, and you are free to choose the variable
name. However, using Q is a recommended convention for clarity and consistency. If you use a custom variable
(e.g., Quad), you must initialize it manually. The init_elements() function reinitializes the Q table if used.

17.1. Creating a quadrilateral

The quadrilateral class requires four points. The order defines the sides of the quadrilateral.

The object is usually stored in Q, which is the recommended variable name.

Q.ABCD = quadrilateral:new(z.A, z.B, z.C, z.D)

Short form.
A shorthand constructor is also available:

Q.ABCD = quadrilateral(z.A, z.B, z.C, z.D)

17.2. Quadrilateral Attributes

Points are created in the direct direction. A test is performed to check whether the points form a rectangle,
otherwise compilation is blocked.

Creation: Q.new = rectangle:new(z.A,z.B,z.C,z.D)

Table 18: rectangle attributes.
Attributes Application
pa z.A = Q.new.pa
pb z.B = Q.new.pb
pc z.C = Q.new.pc
pd z.D = Q.new.pd
type Q.new.type= 'quadrilateral'
center z.I = Q.new.center intersection of diagonals
g z.G = Q.new.g barycenter
a AB = Q.new.a barycenter
b BC = Q.new.b barycenter
c CD = Q.new.c barycenter
d DA = Q.new.d barycenter
ab Q.new.ab line passing through two vertices
ac Q.new.ca idem.
ad Q.new.ad idem.
bc Q.new.bc idem.
bd Q.new.bd idem.
cd Q.new.cd idem.
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17.2.1. Quadrilateral attributes

\directlua{
init_elements()
z.A = point(0, 0)
z.B = point(4, 0)
z.C = point(5, 1)
z.D = point(0, 3)
Q.ABCD = quadrilateral(z.A, z.B, z.C, z.D)
z.I = Q.ABCD.i
z.G = Q.ABCD.g}

\begin{tikzpicture}
\tkzGetNodes
\tkzDrawPolygon(A,B,C,D)
\tkzDrawSegments(A,C B,D)
\tkzDrawPoints(A,B,C,D,I,G)
\end{tikzpicture}

17.2.2. Quadrilateral examples

Advanced Euclidean Geometry 2013 Supplement June 26

Construction of geometric mean:

𝐴 𝐷

𝐼

𝐵 𝐶

𝑃

𝐻
𝐺 𝐺′

𝐻′

𝑏

𝑎

Proof. A trapezoid with parallel sides 𝐴𝐷 and 𝐵𝐶 is given.
Let H be the endpoint of the parallel through 𝐼 to the side 𝐴𝐷. 𝐻𝐻 ′ = 2𝑎𝑏

𝑎+𝑏
.

𝑃𝐻 is perpendicular to 𝐴𝐵
(𝑃𝐺) is the bisector of 𝐴𝑃𝐵

𝐺𝐺 ′ = 𝑎 ⋅√𝑏+𝑏 ⋅√𝑎
√𝑎+√𝑏

=
√𝑎𝑏(√𝑎+√𝑏)

√𝑎+√𝑏
=√𝑎𝑏

Code:

\directlua{
init_elements()
z.A = point(0, 0)
z.B = point(1, 4)
z.C = point(3.5, 4)
z.D = point(5, 0 )
Q.ABCD = quadrilateral(z.A, z.B, z.C, z.D)
z.I = Q.ABCD.center
L.ll = Q.ABCD.da:ll_from (z.I)
z.H = intersection(L.ll, Q.ABCD.ab)
z.Hp = intersection(L.ll, Q.ABCD.cd)
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z.M = Q.ABCD.ab.mid
C.MA = circle(z.M,z.A)
L.perp = Q.ABCD.ab:ortho_from(z.H)
_,z.P = intersection(C.MA, L.perp)
T.PAB = triangle(z.P, z.A, z.B)
L.bis = T.PAB:bisector()
z.G = L.bis.pb
L.llg = Q.ABCD.da:ll_from(z.G)
L.llm = Q.ABCD.da:ll_from(z.M)
z.Gp = intersection(L.llg, Q.ABCD.cd)}

17.3. Quadrilateral methods

Table 19: Quadrilateral methods.
Methods Reference

new() Note10; [17.1]
is_cyclic () [17.3.1]
is_convex () [17.3.2]
poncelet_point() [17.3.3]

17.3.1. Method is_cyclic()

Inscribed quadrilateral

\directlua{
init_elements()
z.A = point(0, 0)
z.B = point(4, 0)
z.D = point:polar(4, tkz.tau / 3)
L.DB = line(z.D, z.B)
T.equ = L.DB:equilateral()
z.C = T.equ.pc
Q.new = quadrilateral(z.A, z.B, z.C, z.D)
bool = Q.new:is_cyclic()
if bool == true then
C.cir = triangle(z.A, z.B, z.C):
circum_circle()
z.O = C.cir.center

end}
\begin{tikzpicture}
\tkzGetNodes
\tkzDrawPolygon(A,B,C,D)
\tkzDrawPoints(A,B,C,D)
\tkzDrawCircle(O,A)
\ifthenelse{\equal{\tkzUseLua{bool}}{

true}}{\tkzDrawCircle(O,A)}{}
\tkzLabelPoints(A,B)
\tkzLabelPoints[above](C,D)

\end{tikzpicture}

𝐴 𝐵

𝐶

𝐷

17.3.2. Method is_convex()

17.3.3. Method poncelet_point

See [14.6.27] for the definition.
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𝐴

𝐵

𝐶

𝐷

𝑃

\directlua{
init_elements()
z.A = point(1, 1)
z.B = point(6, 0)
z.D = point(0, 5)
z.C = point(6, 2)
Q.ABCD = quadrilateral(z.A, z.B, z.C, z.D)
z.P = Q.ABCD:poncelet_point()
T.ABC = triangle(z.A,z.B,z.C)
z.I = T.ABC.eulercenter
z.Mc = tkz.midpoint(z.A, z.B)
T.ABD = triangle(z.A, z.B, z.D)
z.I1 = T.ABD.eulercenter}
\begin{center}
\begin{tikzpicture}

\tkzGetNodes
\tkzDrawPolygons(A,B,C,D)
\tkzDrawPoints(A,B,C,D,P,Mc)
\tkzDrawCircles[red](I,Mc I1,Mc)
\tkzLabelPoints(A,B)
\tkzLabelPoints[above](C,D,P)

\end{tikzpicture}
\end{center}
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18. Class square

The variable S holds a table used to store squares. It is optional, and you are free to choose the variable name.
However, using S is a recommended convention for clarity and consistency. If you use a custom variable (e.g.,
Squares), you must initialize it manually. The init_elements() function reinitializes the S table if used.

18.1. Creating a square

The square class constructs a square from two adjacent vertices. The order of the points defines the orientation.

The result is stored in S.

S.ABCD = square:new(z.A, z.B)

Short form.
The short form square(z.A, z.B) is equivalent:

S.ABCD = square(z.A, z.B)

18.2. Square attributes

Points are created in the direct direction. A test is performed to check whether the points form a square.
Otherwise, compilation is blocked.”

Creation S.AB = square(z.A,z.B,z.C,z.D)

Table 20: Square attributes.
Attributes Application

pa z.A = S.AB.pa
pb z.B = S.AB.pb
pc z.C = S.AB.pc
pd z.D = S.AB.pd
type S.AB.type= 'square'
side s = S.AB.center s = length of side
center z.I = S.AB.center center of the square
circumradius S.AB.circumradius radius of the circumscribed circle
inradius S.AB.inxradius radius of the inscribed circle (apothem)
apothem_foot S.AB.proj projection of the center on one side
ab S.AB.ab line passing through two vertices
ac S.AB.ca idem.
ad S.AB.ad idem.
bc S.AB.bc idem.
bd S.AB.bd idem.
cd S.AB.cd idem.
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18.2.1. Example: square attributes

\directlua{
init_elements()
z.A = point(0, 0)
z.B = point(4, 0)
z.C = point(4, 4)
z.D = point(0, 4)
S.new = square(z.A, z.B, z.C, z.D)
z.I = S.new.center
z.H = S.new.proj}
\begin{tikzpicture}
\tkzGetNodes
\tkzDrawCircles[orange](I,A I,H)
\tkzDrawPolygon(A,B,C,D)
\tkzDrawPoints(A,B,C,D,H,I)
\tkzLabelPoints(A,B,H,I)
\tkzLabelPoints[above](C,D)
\tkzDrawSegments(I,B I,H)
\tkzLabelSegment[sloped](I,B){%
\pmpn{\tkzUseLua{S.new.circumradius}}}

\tkzLabelSegment[sloped](I,H){%
\pmpn{\tkzUseLua{S.new.inradius}}}

\tkzLabelSegment[sloped](D,C){%
\pmpn{\tkzUseLua{S.new.side}}}

\end{tikzpicture}

𝐴 𝐵

𝐻

𝐼

𝐶𝐷

2.8284

2

4
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18.3. Square Methods and Functions

Table 21: Square methods
Methods Reference

new(za,zb,zc,zd) Note11;[18.3.1]
square.by_rotation (zi,za) [18.3.1]
square.from_side(za,zb,"swap") 18.3.2

18.3.1. Function square.by_rotation(pt,pt)

𝐼 square center; 𝐴 first vertex

𝐵

𝐴

𝐶

𝐷 \directlua{
z.A = point(0, 0)
z.I = point(2, -1)
S = square.by_rotation(z.I, z.A)
z.B = S.pb
z.C = S.pc
z.D = S.pd
z.I = S.center}
\begin{tikzpicture}
\tkzGetNodes
\tkzDrawPolygon(A,B,C,D)
\tkzDrawPoints(A,B,C,D)
\tkzLabelPoints(B)
\tkzLabelPoints[above](A)
\tkzLabelPoints[right](C,D)
\tkzDrawPoints[red](I)
\end{tikzpicture}

18.3.2. Method square.from_side(za,zb)

With the option "swap" then the square is defined in counterclockwise. The result can also be obtained from a
line [12.12.1].
\directlua{
init_elements()
z.A = point(0, 0)
z.B = point(2, 1)
S.side = square.from_side(z.A, z.B)
z.B = S.side.pb
z.C = S.side.pc
z.D = S.side.pd
z.I = S.side.center}
\begin{tikzpicture}[scale = 2]

\tkzGetNodes
\tkzDrawPolygon(A,B,C,D)
\tkzDrawPoints(A,B,C,D)
\tkzLabelPoints(A,B)
\tkzLabelPoints[above](C,D)
\tkzDrawPoints[red](I)

\end{tikzpicture} 𝐴

𝐵

𝐶

𝐷
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19. Class rectangle

The variable R holds a table used to store triangles. It is optional, and you are free to choose the variable name.
However, using R is a recommended convention for clarity and consistency. If you use a custom variable (e.g.,
rectangles), you must initialize it manually. The init_elements() function reinitializes the R table if used.

19.1. Rectangle attributes

Points are created in the direct direction. A test is performed to check whether the points form a rectangle,
otherwise compilation is blocked.

Creation R.ABCD = rectangle:new(z.A, z.B, z.C, z.D)

Table 22: rectangle attributes.
Attributes Application

pa z.A = R.ABCD.pa
pb z.B = R.ABCD.pb
pc z.C = R.ABCD.pc
pd z.D = R.ABCD.pd
type R.ABCD.type= 'rectangle'
center z.I = R.ABCD.center center of the rectangle
length R.ABCD.length the length
width R.ABCD.width the width
diagonal R.ABCD.diagonal diagonal length
ab R.ABCD.ab line passing through two vertices
ac R.ABCD.ca idem.
ad R.ABCD.ad idem.
bc R.ABCD.bc idem.
bd R.ABCD.bd idem.
cd R.ABCD.cd idem.

19.1.1. Example

\directlua{
init_elements()
z.A = point(0, 0)
z.B = point(4, 0)
z.C = point(4, 4)
z.D = point(0, 4)
R.new = rectangle(z.A, z.B, z.C, z.D)
z.I = R.new.center}

\begin{tikzpicture}
\tkzGetNodes
\tkzDrawPolygon(A,B,C,D)
\tkzDrawPoints(A,B,C,D)
\tkzLabelPoints(A,B)
\tkzLabelPoints[above](C,D)
\tkzDrawPoints[red](I)
\end{tikzpicture} 𝐴 𝐵

𝐶𝐷

𝐼R.new.center

R.new.length = 4

R.
ne

w.
di

ag
on

al
=
5.6
56
9
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19.2. Rectangle methods

Table 23: Rectangle methods.
Methods Reference

new(za ,zb, zc, zd) Note12;[19.2.1]
angle (zi, za, angle) [19.2.2]
gold (za, zb) [19.2.5]
diagonal (za, zc) [19.2.4]
side (za, zb, d) [19.2.3]
get_lengths () [19.2.6]

19.2.1. Method new(pt,pt,pt,pt)

This function creates a square using four points. No test is performed, and verification is left to the user.

𝐴 𝐵

𝐶

𝐷

𝐼𝐸

𝐹

𝐺

𝐻

𝑋

\directlua{
z.A = point(0, 0)
z.B = point(4, 0)
z.C = point(4, 3)
z.D = point(-2, -3)
L.AB = line(z.A,z.B)
L.CD = line(z.C,z.D)
z.I = intersection(L.AB, L.CD)
C.I = circle(through(z.I, 3.5))
z.G,z.E = intersection(L.AB, C.I)
z.F,z.H = intersection(L.CD, C.I)
R.I = rectangle(z.E, z.F, z.G, z.H)
z.X = R.I.ab:projection(z.I)}
\begin{tikzpicture}
\tkzGetNodes
\tkzDrawPolygon(E,F,G,H)
\tkzDrawPoints(A,B,C,D,I,E,F,G,H,X)
\tkzLabelPoints(A,B,C,D,I,E,F,G,H,X)
\tkzDrawPoints(I)
\end{tikzpicture}

19.2.2. Method angle(pt,pt,an)

R.ang = rectangle:angle(z.I,z.A) ; z.A vertex ; ang angle between 2 vertices
\directlua{
init_elements()
z.A = point(0, 0)
z.B = point(4, 0)
z.I = point(4, 3)
P.ABCD = rectangle:angle(z.I, z.A,

math.pi / 6)
z.B = P.ABCD.pb
z.C = P.ABCD.pc
z.D = P.ABCD.pd}
\begin{tikzpicture}[scale = .5]
\tkzGetNodes
\tkzDrawPolygon(A,B,C,D)
\tkzDrawPoints(A,B,C)
\tkzLabelPoints(A,B,C,D)
\tkzDrawPoints[new](I)
\end{tikzpicture}

𝐴

𝐵

𝐶

𝐷

rectangle: angle (z.C,z.A,math.pi/6)
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19.2.3. Method side(pt,pt,d)

\directlua{
init_elements()
z.A = point(0, 0)
z.B = point(4, 3)
R.side = rectangle:side(z.A, z.B, 3)
z.C = R.side.pc
z.D = R.side.pd
z.I = R.side.center}
\begin{tikzpicture}
\tkzGetNodes
\tkzDrawPolygon(A,B,C,D)
\tkzDrawPoints(A,B,C,D)
\tkzLabelPoints(A,B)
\tkzLabelPoints[above](C,D)
\tkzDrawPoints[red](I)
\end{tikzpicture}

𝐴

𝐵

𝐶

𝐷

rectangle:side(z.A,z.B,3)

19.2.4. Method diagonal(pt,pt)

\directlua{
init_elements()
z.A = point(0, 0)
z.C = point(4, 3)
R.diag = rectangle:diagonal(z.A, z.C)
z.B = R.diag.pb
z.D = R.diag.pd
z.I = R.diag.center}
\begin{tikzpicture}
\tkzGetNodes
\tkzDrawPolygon(A,B,C,D)
\tkzDrawPoints(A,B,C,D)
\tkzLabelPoints(A,B)
\tkzLabelPoints[above](C,D)
\tkzDrawPoints[red](I)
\tkzLabelSegment[sloped,above](A,B){%

|rectangle:diagonal(z.A,z.C)|}
\end{tikzpicture}

𝐴 𝐵

𝐶𝐷

rectangle:diagonal(z.A, z.C)
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19.2.5. Method gold(pt,pt)

\directlua{
init_elements()
z.X = point(0, 0)
z.Y = point(4, 2)
R.gold = rectangle:gold(z.X, z.Y)
z.Z = R.gold.pc
z.W = R.gold.pd
z.I = R.gold.center}
\begin{tikzpicture}
\tkzGetNodes
\tkzDrawPolygon(X,Y,Z,W)
\tkzDrawPoints(X,Y,Z,W)
\tkzLabelPoints(X,Y)
\tkzLabelPoints[above](Z,W)
\tkzDrawPoints[red](I)
\tkzLabelSegment[sloped,above](X,Y){%
|rectangle:gold(z.X,z.Y)|}
\end{tikzpicture}

𝑋

𝑌

𝑍

𝑊

rectangle:gold(z.X,z.Y)

19.2.6. Method get_lengths()

𝐴
𝐵

𝐶
𝐷

3.873

2.2361

\directlua{
init_elements()
z.I = point(2, 1)
z.A = point(0, 0)
R.ABCD = rectangle:angle(z.I, z.A, math.pi / 3)
z.B = R.ABCD.pb
z.C = R.ABCD.pc
z.D = R.ABCD.pd
tkzx,tkzy = R.ABCD:get_lengths()}

\begin{tikzpicture}
\tkzGetNodes
\tkzDrawPolygon(A,B,C,D)
\tkzDrawCircle(I,A)
\tkzDrawPoints(A,B,C,D)
\tkzLabelPoints(A,B)
\tkzLabelPoints[above](C,D)
\tkzDrawPoints[](I)
\tkzLabelSegment(A,B){%

$\pmpn{\tkzUseLua{tkzx}}$}
\tkzLabelSegment[right](B,C){%

$\pmpn{\tkzUseLua{tkzy}}$}
\end{tikzpicture}
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20. Class parallelogram

The variable P holds a table used to store parallelograms. It is optional, and you are free to choose the variable
name. However, using P is a recommended convention for clarity and consistency. If you use a custom variable
(e.g., parall), you must initialize it manually. The init_elements() function reinitializes the P table if used.

20.1. Creating a parallelogram

The parallelogram class creates a parallelogram using three points. The fourth vertex is computed automati-
cally.

The resulting object is stored in P. You are free to use another name, but P is preferred for consistency.

P.ABCD = parallelogram:new(z.A, z.B, z.C)

Short form.
You may also use the short form:

P.ABCD = parallelogram(z.A, z.B, z.C)

20.2. Parallelogram attributes

Points are created in the direct direction. A test is performed to check whether the points form a parallelogram,
otherwise compilation is blocked.

Creation P.new = parallelogram(z.A,z.B,z.C,z.D)

Table 24: Parallelogram attributes.
Attributes Application

pa z.A = P.new.pa
pb z.B = P.new.pb
pc z.C = P.new.pc
pd z.D = P.new.pd
type P.new.type= 'parallelogram'
center z.I = P.new.center intersection of diagonals
ab P.new.ab line passing through two vertices
ac P.new.ca idem.
ad P.new.ad idem.
bc P.new.bc idem.
bd P.new.bd idem.
cd P.new.cd idem.
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20.2.1. Example: attributes

\directlua{
init_elements()
z.A = point(0, 0)
z.B = point(4, 1)
z.C = point(7, 5)
z.D = point(3, 4)
P.new = parallelogram(z.A, z.B, z.C, z.D)
z.B = P.new.pb
z.C = P.new.pc
z.D = P.new.pd
z.I = P.new.center}
\begin{tikzpicture}
\tkzGetNodes
\tkzDrawPolygon(A,B,C,D)
\tkzDrawPoints(A,B,C,D)
\tkzLabelPoints(A,B)
\tkzLabelPoints[above](C,D)
\tkzDrawPoints[red](I)
\end{tikzpicture}

𝐴

𝐵

𝐶

𝐷
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20.3. Parallelogram functions

Table 25: Parallelogram functions.
Functions Reference

new (za, zb, zc, zd) 20.2.1
parallelogram.fourth (za,zb,zc) 20.3.2

20.3.1. Method new(pt,pt,pt,pt)

𝐴

𝐵

𝐶

𝐷

\directlua{
z.A = point(0, 0)
z.B = point(4, 1)
z.C = point(7, 5)
z.D = point(3, 4)
P.ABCD = parallelogram(z.A, z.B, z.C, z.D)
z.B = P.ABCD.pb
z.C = P.ABCD.pc
z.D = P.ABCD.pd
z.I = P.ABCD.center}
\begin{tikzpicture}
\tkzGetNodes
\tkzDrawPolygon(A,B,C,D)
\tkzDrawPoints(A,B,C,D)
\tkzLabelPoints(A,B)
\tkzLabelPoints[above](C,D)
\tkzDrawPoints[red](I)
\end{tikzpicture}

20.3.2. Method fourth(pt,pt,pt)

completes a triangle by parallelogram (See next example)
\directlua{
init_elements()
z.A = point(0, 0)
z.B = point(3, 1)
z.C = point(4, 3)
P.four= parallelogram.fourth(z.A, z.B, z.C)
z.D = P.four.pd
z.I = P.four.center}
\begin{tikzpicture}[ scale = .75]
\tkzGetNodes
\tkzDrawPolygon(A,B,C,D)
\tkzDrawPoints(A,B,C,D)
\tkzLabelPoints(A,B)
\tkzLabelPoints[above](C,D)
\tkzDrawPoints[red](I)
\end{tikzpicture}

𝐴

𝐵

𝐶

𝐷
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21. Class regular polygon

The variable RP holds a table used to store regular polygons. It is optional, and you are free to choose the
variable name. However, using RP is a recommended convention for clarity and consistency. If you use a custom
variable (e.g., REP), you must initialize it manually. The init_elements() function reinitializes the RP table
if used.

21.1. Creating a regular polygon

The regular_polygon class builds a regular polygon from its center, a first vertex, and the number of sides.

The result is usually stored in P, a variable used to group polygonal objects.

P.hex = regular_polygon:new(z.O, z.A, 6)

Short form.
Use the short form for brevity:

P.hex = regular_polygon(z.O, z.A, 6)

21.2. Regular_polygon attributes

Creation RP.IA = regular_polygon(z.I,z.A,6)

Table 26: Regular_polygon attributes.
Attributes Application

center z.I = RP.IA.center
vertices array containing all vertex affixes
through first vertex
circle defines the circle with center I passing through A
type RP.IA.type= 'regular\_polygon'
side s = RP.IA.side ; s = length of side
circumradius S.AB.circumradius ; radius of the circumscribed circle
inradius S.AB.inxradius ; radius of the inscribed circle
apothem RP.IA.apothem ; projection of the center on one side
angle RP.IA.angle ; angle formed by the center and 2 consecutive vertices
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21.2.1. Pentagon

\directlua{
init_elements()
z.O = point(0, 0)
z.I = point(1, 3)
z.A = point(2, 0)
RP.five = regular_polygon(z.I, z.A, 5)
RP.five:name("P_")
C.ins = circle:radius(z.I,

RP.five.inradius)
z.H = RP.five.apothem
}
\begin{tikzpicture}[scale = .75]
\def\nb{\tkzUseLua{RP.five.nb}}
\tkzGetNodes
\tkzDrawCircles(I,A I,H)
\tkzDrawPolygon(P_1,P_...,P_\nb)
\tkzDrawPoints[red](P_1,P_...,P_\nb,H,I)
\tkzLabelPoints[red](I,A,H)
\end{tikzpicture}

𝐼

𝐴

𝐻

21.3. Regular_polygon methods

Table 27: regular_polygon methods.
Constructor

new(O,A,n) [21.3.1]

Methods Returning a Circle

incircle () [21.3.2]

Methods Returning a Point

name (string) [21.3.3]

21.3.1. Method new(pt, pt, n)

𝐴1

𝐴2

𝐴3

𝐴4

𝐴5

𝐴6

\directlua{
z.A = point(0, -4)
z.O = point(0, 0)
RP.six = regular_polygon(z.O, z.A, 6)
RP.six:name("A_")
z.i, z.p = RP.six:incircle():get()}

\begin{tikzpicture}[gridded,scale=.75]
\tkzGetNodes
\tkzDrawCircles[red](O,A)
\tkzDrawCircles[teal](i,p)
\tkzDrawPolygon(A_1,A_...,A_6)
\tkzDrawPoints[red](A_1,A_...,A_6)
\tkzLabelPoints[red](A_1,A_...,A_6)

\end{tikzpicture}

21.3.2. Method incirle()

See previous example [21.3.1]
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21.3.3. Method name(s)

See [21.3.1]
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22. Class vector

A vector object represents an oriented segment from a tail point 𝐴 to a head point 𝐵. Internally, it is built
from two points and , interpreted as complex numbers. The vector stores both its geometric endpoints and its
analytic data (components, length, direction).
The variable V holds a table used to store vectors. It is optional, and you are free to choose the variable name.
However, using V is a recommended convention for clarity and consistency. If you use a custom variable (e.g.,
Vectors), you must initialize it manually. The init_elements() function reinitializes the V table if used.

In fact, they are more a class of oriented segments than vectors in the strict mathematical sense.
A vector is defined by giving two points (i.e. two affixes). V.AB = vector(z.A, z.B) creates the vector (⃗⃗⃗⃗⃗⃗⃗𝐴𝐵),
i.e. the oriented segment with origin 𝐴 representing a vector. A few rudimentary operations are defined, such
as sum, subtraction and multiplication by a scalar.

22.1. Creating a vector

The vector class represents a vector between two points or a free vector with given coordinates.

The result is usually stored in V.

Short form:

V.v1 = vector:new(z.A, z.B) -- from A to B
The short form is equivalent:
V.v1 = vector(z.A, z.B)

22.2. Attributes of a vector

Table 28: Vector attributes.
Attributes Reference

tail
head [22.2.1]
type [22.2.2]
slope [22.2.3]
z [22.2.7]
dx [22.2.4]
dy [22.2.4]
norm [22.2.5]
mtx [22.2.6]

22.2.1. Attribute head

𝐴

𝐵

𝐶

𝐷

𝑂

𝐸

⃗⃗𝑢

⃗⃗𝑣

⃗⃗𝑤⃗

\directlua{
init_elements()
z.O = point(0, 0)
z.A = point(0, 1)
z.B = point(3, 4)
z.C = point(1, 2)
z.D = point(2, 1)
V.u = vector(z.A, z.B)
V.v = vector(z.C, z.D)
V.w = V.u + V.v
z.E = V.w.head}
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22.2.2. Attributes type

With previous data:

V.u.type = 'vector'

22.2.3. Attribute slope

The attribute gives the slope of the line supporting a vector representative.

36.870 \directlua{
z.A = point(-1, 0)
z.B = point (3, 3)
V.u = vector(z.A, z.B)
local d = math.deg(V.u.slope)
tex.print(utils.format_number(d,3))}

22.2.4. Attributes dx, dy

These attributes give the coordinates of the vectors in the reference base.

(dx,dy) =(4,2)

𝐴

𝐵

𝐶

𝐷

𝐸

\directlua{
z.A = point(0, 1)
z.B = point(3, 4)
z.C = point(3, 2)
z.D = point(4, 1)
V.u = vector(z.A, z.B)
V.v = vector(z.C, z.D)
V.w = V.u + V.v
z.E = V.w.head
local pc = string.char(37)
local format = "("..pc.."g,"..pc.."g)"
tex.print("(dx,dy) =

",string.format(format, V.w.dx, V.w.dy))
}

\begin{center}
\begin{tikzpicture}[gridded]
\tkzGetNodes
\tkzLabelPoints(A,B,C,D,E)
\tkzDrawSegments[->,red](A,B C,D)
\tkzDrawSegments[->,blue](A,E B,E)
\tkzDrawPoints(A,C)

\end{tikzpicture}
\end{center}

22.2.5. Attribute norm

This attribute gives the length of the segment between the two ends.

norm =5.0 \directlua{
z.A = point(-1, 0)
z.B = point(3, 3)
V.u = vector(z.A, z.B)
V.d = V.u.norm
tex.print("norm = ",V.d)}

22.2.6. Attribute mtx

This involves associating a matrix in the form of a column vector with the vector under consideration.
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[ 1
2+𝑖][1 2+𝑖]

\directlua{
z.O = point(1, 0)
z.I = point(2, 1)
V.u = vector(z.O, z.I)
V.u.mtx:print()
V.v = V.u.mtx:transpose()
V.v:print()}

22.2.7. Attribute z

This attribute is very useful for working with the ^ and .. metamethods.

determinant(u,v) = 7
dot product(u,v) = 1

\directlua{
z.A = point(1, 1)
z.B = point(2, -1)
z.C = point(0, 1)
z.D = point(3, 2)
V.u = vector(z.A, z.B)
V.v = vector(z.C, z.D)
n = V.u.z ^ V.v.z
m = V.u.z .. V.v.z
tex.print("determinant(u,v) = "..tostring(n))
tex.print('\\\\')
tex.print("dot product(u,v) = "..tostring(m))
}
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22.3. Metamethods overview of the class vector

Table 29: Methods of the class vector.
Metamethods Reference

add(u,v) [22.4.1]
sub(u,v) [22.4.2]
unm(u) [22.4.4]
mul(k,u) [22.4.3]
pow(k,u) [22.4.5]
concat(k,u) [22.4.6]

22.4. Example of metamethods

22.4.1. Method add

The sum is defined as follows:
Let V.AB + V.CD result in a vector V.AE defined as follows
If ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗𝐶𝐷= ⃗⃗⃗⃗⃗⃗⃗𝐵𝐸 then ⃗⃗⃗⃗⃗⃗⃗𝐴𝐵+ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗𝐶𝐷= ⃗⃗⃗⃗⃗⃗⃗𝐴𝐵+ ⃗⃗⃗⃗⃗⃗⃗𝐵𝐸= ⃗⃗⃗⃗⃗⃗⃗𝐴𝐸

z.A = point(0, 1)
z.B = point(3, 4)
z.C = point(3, 2)
z.D = point(4, 1)
V.AB = vector(z.A, z.B)
V.CD = vector(z.C, z.D)
V.AE = V.AB + V.CD % possible V.AB:add(V.CD)
z.E = V.AE.head % we recover the final point (head)

𝐴

𝐵

𝐶

𝐷

𝐸

⃗⃗𝑢

⃗⃗𝑣

⃗⃗𝑤⃗

\directlua{
init_elements()
z.A = point(0, 1)
z.B = point(3, 4)
z.C = point(3, 2)
z.D = point(4, 1)
V.u = vector(z.A, z.B)
V.v = vector(z.C, z.D)
V.w = V.u + V.v % or V.u:add(V.v)
z.E = V.w.head}
\begin{tikzpicture}[gridded]

\tkzGetNodes
\tkzLabelPoints(A,B,C,D,E)
\tkzDrawSegments[->,red](A,B)
\tkzDrawSegments[->,cyan](A,E)
\tkzDrawSegments[->,blue](C,D B,E)
\tkzLabelSegment(A,B){$\overrightarrow{u}$}
\tkzLabelSegment(C,D){$\overrightarrow{v}$}
\tkzLabelSegment(A,E){$\overrightarrow{w}$}

\end{tikzpicture}
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22.4.2. Method sub

𝐴

𝐵

𝐶

𝐷

𝐸

⃗⃗𝑢

⃗⃗𝑣

⃗⃗𝑤⃗

\directlua{
z.A = point(0, 1)
z.B = point(3, 4)
z.C = point(3, 2)
z.D = point(4, 1)
V.u = vector(z.A, z.B)
V.v = vector(z.C, z.D)
V.w = V.u - V.v
z.E = V.w.head}

\begin{tikzpicture}[gridded]
\tkzGetNodes
\tkzLabelPoints(A,B,C,D,E)
\tkzDrawSegments[->,red](A,B)
\tkzDrawSegments[->,cyan](A,E)
\tkzDrawSegments[->,blue](C,D B,E)
\tkzLabelSegment(A,B){$\overrightarrow{u}$}
\tkzLabelSegment(C,D){$\overrightarrow{v}$}
\tkzLabelSegment(A,E){$\overrightarrow{w}$}

\end{tikzpicture}

22.4.3. Method mul

This is, of course, multiplication by a scalar.

𝐴

𝐵

𝐶

𝐷

𝐸

⃗⃗𝑢

⃗⃗𝑣⃗⃗𝑤

\directlua{
init_elements()
z.A = point(0, 1)
z.B = point(3, 4)
z.C = point(3, 2)
z.D = point(4, 1)
V.u = vector(z.A, z.B)
V.v = vector(z.C, z.D)
V.w = V.u + 2 * V.v
z.E = V.w.head}

\begin{tikzpicture}[gridded]
\tkzGetNodes
\tkzLabelPoints(A,B,C,D,E)
\tkzDrawSegments[->,red](A,B)
\tkzDrawSegments[->,cyan](A,E)
\tkzDrawSegments[->,blue](C,D B,E)
\tkzLabelSegment(A,B){$\overrightarrow{u}$}
\tkzLabelSegment(C,D){$\overrightarrow{v}$}
\tkzLabelSegment(A,E){$\overrightarrow{w}$}

\end{tikzpicture}

22.4.4. Method unm

Cette méthode vous permet d’écrire V.w = -V.v
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𝐴

𝐵

𝐶

𝐷

𝐸
\directlua{

z.A = point(0, 1)
z.B = point(3, 3)
z.C = point(3, 2)
z.D = point(4, 1)
V.u = vector(z.A, z.B)
V.v = vector(z.C, z.D)
V.v = -V.v
V.w = V.u + V.v
z.E = V.w.head}

\begin{center}
\begin{tikzpicture}[gridded]
\tkzGetNodes
\tkzLabelPoints(A,B,C,D,E)
\tkzDrawSegments[->,red](A,B)
\tkzDrawSegments[->,cyan](A,E)
\tkzDrawSegments[->,blue](D,C B,E)

\end{tikzpicture}
\end{center}

22.4.5. Method ^

Instead of the power, which wouldn’t make sense here, we’re talking about the determinant of two vectors.
Note: the reference frame used is orthonormal and direct.

V.u = vector(z.A, z.B) with z.A = point(xa, ya) and z.B = point(xb, yb)
V.v = vector(z.C, z.D) with z.C = point(xc, yc) and z.D = point(xd, yd) then
V.u ^ V.v = xa * yb - xb * ya

remark: u ^ v = u.norm * v.norm * sin(u,v)

22.4.6. Method ..

Instead of the concatenation, which wouldn’t make sense here, we’re talking about the dot product of two
vectors. Note: the reference frame used is orthonormal and direct.

V.u = vector(z.A, z.B) with z.A = point(xa, ya) and z.B = point(xb, yb)
V.v = vector(z.C, z.D) with z.C = point(xc, yc) and z.D = point(xd, yd) then
V.u .. V.v = xa * xb + ya * yb

remark: V.u .. V.v = V.u.norm * V.v.norm * cos(V.u,V.v)
We’re going to use the two last methods . We can determine the cosine and sine of the angle using the dot
product and determinant expressed in the direct orthonormal frame used by the package.

𝐴

𝐵

𝑂

−75.96 deg

\directlua{
z.O = point(0, 0)
z.A = point(5, 0)
z.B = point(1, -4)
V.u = vector(z.O, z.A)
V.v = vector(z.O, z.B)
local dp = V.u .. V.v % dot product
local d = V.u ^ V.v % determinant
% costheta = dp / (u.norm * v.norm)
% sintheta = d / (u.norm * v.norm)
an = math.atan(d / dp)}

The code required to display the angle measurement is as follows:
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\tkzLabelAngle[pos=2](B,O,A){$\directlua{
local format = string.char(37) .. ".2f"
tex.print(string.format( format , math.deg(an)))}$ deg}

The main methods provided by the vector class are summarised below.

Table 30: Methods of the class vector.
Methods Reference

Constructor

new(pt, pt) Note13; 22.1

Methods Returning a Boolean

is_zero([EPS])
is_parallel(v,[EPS])
is_orthogonal(v,[EPS])

Methods Returning a Point

get()

Methods Returning a Vector
add(v)
scale(d)
dot(v)
cross(v)
normalize() [22.6.1]
angle_to(v)
at (pt) [22.6.2]
rotate()
orthogonal([side],[length])

22.5. Returns a boolean

22.5.1. Predicates: is_zero, is_parallel, is_orthogonal

if V:is_zero() then ... end
if V:is_parallel(W) then ... end
if V:is_orthogonal(W) then ... end

These methods test basic geometric relations between vectors, using an optional tolerance , which defaults to
. They are convenient when deciding whether two directions should be treated as parallel or orthogonal in
numerical computations.

22.6. Returns a vector

22.6.1. Method normalize()

This method produces a normalized vector that is collinear with the initial vector.

𝐴

𝐵

𝑁

\directlua{
init_elements()
z.A = point(0, 1)
z.B = point(3, 4)
V.AB = vector(z.A, z.B)
V.AN = V.AB:normalize()
z.N = V.AN.head}
\begin{tikzpicture}
\tkzGetNodes
\tkzDrawSegments(A,B)
\tkzDrawPoints(A,B,N)
\tkzLabelPoints(A,B,N)
\end{tikzpicture}
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22.6.2. Method at()

𝐴

𝐵

𝑂

𝐶

\directlua{
init_elements()
z.A = point(0, 1)
z.B = point(3, 4)
z.O = point(0, 0)
V.AB = vector(z.A, z.B)
V.OC = V.AB:at(z.O)
z.C = V.OC.head}
\begin{tikzpicture}
\tkzGetNodes
\tkzDrawSegments(A,B O,C)
\tkzDrawPoints(A,B,O,C)
\tkzLabelPoints(A,B,O,C)
\end{tikzpicture}

22.6.3. Method orthogonal([side],[length])

Vperp = V:orthogonal() -- default: "ccw"
VperpC = V:orthogonal("cw") -- clockwise orthogonal
Vlen = V:orthogonal("ccw", 2.0) -- orthogonal of prescribed length

The orthogonal method constructs an orthogonal vector to V, with the same tail:

– the optional argument may be "ccw" (counter-clockwise, the default) or "cw" (clockwise),

– the optional argument may be used to prescribe the norm of the resulting vector; if omitted, the length is
determined by a rotation of the current vector.

𝐴

𝐵𝑅

𝑆

\directlua{
init_elements()
z.A = point(0, 1)
z.B = point(3, 4)
V.AB = vector(z.A, z.B)
V.AR = V.AB:orthogonal(2 * math.sqrt(2))
z.R = V.AR.head
V.AS = V.AB:orthogonal("cw",2)
z.S = V.AS.head}
\begin{center}
\begin{tikzpicture}[gridded]
\tkzGetNodes
\tkzDrawSegments[>=stealth,->,
red](A,B A,R A,S)

\tkzLabelPoints(A,B,R,S)
\end{tikzpicture}
\end{center}
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23. Class matrix

The variable M holds a table used to store matrices. It is optional, and you are free to choose the variable name.
However, using M is a recommended convention for clarity and consistency. If you use a custom variable (e.g.,
Matrices), you must initialize it manually.
The init_elements() function reinitializes the M table if used.

The matrix class is currently experimental, and its attribute and method names have not yet been finalized,
indicating that this class is still evolving. Certain connections have been made with other classes, such as the
point class. Additionally, a new attribute, mtx, has been included, associating a column matrix with the point,
where the elements correspond to the point’s coordinates in the original base. Similarly, an attribute has been
added to the vector class, where mtx represents a column matrix consisting of the two affixes that compose the
vector.
This matrix class has been created to avoid the need for an external library, and has been adapted to plane
transformations. It allows you to use complex numbers.
+ To display matrices, you’ll need to load the amsmath package.
+ While some methods are valid for any matrix size, the majority are reserved for square matrices of order 2
and 3.

23.1. Matrix creation

The creation of a matrix is the result of numerous possibilities. Let’s take a look at the different cases
The first one is to use an array of arrays, that is, a table wherein each element is another table. For instance,
you can create a matrix of zeros with dimensions N by M with the following code:

– The first method is: [23.5.2]. This function is the most important, as it’s the one that creates an object.
The other functions create specific objects and always use this function.
The matrix class represents a 2×2 matrix defined by four values.

M = matrix:new(1, 0, 0, 1) -- identity matrix

Short form:

A more concise form is available:

M = matrix(1, 0, 0, 1)

M.new = matrix({ { a, b }, { c, d } })
a, b, c, et d being real or complex numbers.

M = [1 2
3 4]

\directlua{
init_elements()
local a, b, c, d = 1, 2, 3, 4
M.new = matrix({ { a, b }, { c, d } })
tex.print('M = ') M.new:print()}

– With the function create, you get a matrix whose coefficients are all zero, with a number of columns and
rows of your choice. [23.5.5]

M.cr = matrix.create(4,5)

M =⎡⎢⎢
⎣

0 0 0 0 0
0 0 0 0 0
0 0 0 0 0
0 0 0 0 0

⎤⎥⎥
⎦

\directlua{
init_elements()
M.cr = matrix.create(4, 5)
tex.print('M = ') M.cr:print()}
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– The identity matrix of size 𝑛 is the 𝑛×𝑛 square matrix with ones on the main diagonal and zeros elsewhere.
See [23.5.7]

M.I = matrix.identity(3)

𝐼3 =⎡
⎣

1 0 0
0 1 0
0 0 1

⎤
⎦

\directlua{
init_elements()
M.I = matrix.identity(3)
tex.print('$I_3 = $') M.I:print()}

– It is also possible to obtain a square matrix with: [23.5.6]

M.sq = matrix.square (2,a,b,c,d)

M =[1 2
3 4]

\directlua{
init_elements()
local a, b, c, d = 1, 2, 3, 4

M.sq = matrix.square(2, a, b, c, d)
tex.print('M = ') M.sq:print()}

– In the case of a column vector: [23.5.3]

M.V = matrix.vector(1, 2, 3) also possible M.V = matrix.column(1, 2, 3)

V =⎡
⎣

1
2
3
⎤
⎦

\directlua{
init_elements()
M.V = matrix.vector(1, 2, 3)
tex.print('V = ') M.V:print()}

– In the case of a row vector: [23.5.4]

M.V = matrix.row_vector(1, 2, 3)

V =[1 2 3] \directlua{
init_elements()
M.V = matrix.row_vector(1, 2, 3)
tex.print('V = ') M.V:print()}

– Matrix associated with a point
M.p = matrix({ { p.re }, { p.im } })

– Matrix associated with a vector
It’s a column matrix made up of the affixes of the two points defining the vector.
local M.v = matrix{ { za }, { zb } }

[1+2𝑖
3+4𝑖]

\directlua{
z.A = point(1, 2)
z.B = point(3, 4)
V.u = vector(z.A, z.B)
V.u.mtx:print()}

– Homogeneous transformation matrix [23.5.18]
The objective is to generate a matrix with homogeneous coordinates capable of transforming a coordinate
system through rotation, translation, and scaling. To achieve this, it is necessary to define both the
rotation angle, the coordinates of the new origin ans the scaling factors.
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H =⎡
⎣

1 −0.87 1
0.87 0.50 2
0 0 1

⎤
⎦

\directlua{
init_elements()
M.h = matrix.htm(math.pi / 3, 1, 2, 2, 1)
tex.print('H = ') M.h:print()}

23.2. Method print()

This method (See 23.5.1) is necessary to control the results, so here are a few explanations on how to use it.
It can be used on real or complex matrices, square or not. A few options allow you to format the results. You
need to load the amsmath package to use the ”print” method. Without this package, it is possible to display the
contents of the matrix without formatting with print_array (M)

[1 −1
2 0 ]

\directlua{
init_elements()
M.new = matrix { { 1, -1}, { 2, 0 } }
M.new:print()}

23.3. Attibutes of a matrix

Table 31: Matrix attributes.
Attributes Reference

set [23.3.2]
rows [23.3.3]
cols [23.3.3]
type
det [23.3.4]

23.3.1. Attribute type

M.new = matrix{ { 1, 1}, { 0, 2} } A = { { 1, 1 }, { 0, 2 } }

M is a matrix (and therefore a table) whereas A is a table. Thus M.type gives 'matrix' and A.type = nil.
type(A) or type(M) = table.

23.3.2. Attribute set

A simple array such as {{1,2},{2,-1}} is often considered a matrix. In tkz-elements, we’ll consider M.new
defined by
matrix({ { 1, 1 }, { 0, 2 } })
as a matrix and M.new.set as an array (M.new.set = { { 1, 1 }, {0, 2 } }).
You can access a particular element of the matrix, for example: M.new.set[2][1] gives 0.
\tkzUseLua{M.new.set[2][1]} is the expression that displays 2.

23.3.3. Attributes rows and cols

The number of rows is accessed with M.n.rows and the number of columns with M.n.cols, here’s an example:
\directlua{
init_elements()
M.n = matrix({ { 1, 2, 3 }, { 4, 5, 6 } })
M.n:print()
tex.print("Rows: "..M.n.rows)
tex.print("Cols: "..M.n.cols)}

[1 2 3
4 5 6]Rows: 2 Cols: 3

23.3.4. Attributes det

Give the determinant of the matrix if it is square, otherwise it is nil. The coefficients of the matrix can be
complex numbers.

tkz-elements AlterMundus



23. Class matrix 269

\directlua{
init_elements()
M.s = matrix.square(3, 1, 1, 0, 2, -1, -2, 1, -1, 2)
M.s:print()
tex.print ('\\\\')
tex.print ("Its determinant is: " .. M.s.det)
}

⎡
⎣

1 1 0
2 −1 −2
1 −1 2

⎤
⎦

Its determinant is: -10.0
Its determinant is: -4.00i

23.4. Metamethods for the matrices

Conditions on matrices must be valid for certain operations to be possible.

Table 32: Matrix metamethods.
Metamethods Refrence

add(M1,M2) See [23.4.1]
sub(M1,M2) See [23.4.1]
unm(M - M
mul(M1,M2) [23.4.2]
pow(M,n) [23.4.2]
tostring(M,n) displays the matrix
eq(M1,M2) true or false

23.4.1. Addition and subtraction of matrices

To simplify the entries, I’ve used a few functions to simplify the displays.
\directlua{
init_elements()
M.A = matrix({ { 1, 2 }, { 2 , -1 } })
M.B = matrix({ { -1, 0}, { 1, 3 } })
S = M.A + M.B
D = M.A - M.B
dsp(M.A,'A')
nl() nl()
dsp(M.B,'B')
nl() nl()
dsp(M.S,'S') sym(" = ")
dsp(M.A) sym(' + ') dsp(M.B)
nl() nl()
dsp(M.D,'D') sym(" = ")
dsp(M.A) sym(' - ') dsp(M.B)

}

A = [1 2
2 −1]

B = [−1 0
1 3]

S = [0 2
3 2]= [1 2

2 −1]+ [−1 0
1 3]

D = [2 2
1 −4]= [1 2

2 −1]- [
−1 0
1 3]

23.4.2. Multiplication and power of matrices

To simplify the entries, I’ve used a few functions. You can find their definitions in the sources section of this
documentation. n integer > or < 0 or 'T'
\directlua{
init_elements()
M.A = matrix({ { 1, 2 }, { 2 ,-1 } })
M.B = matrix({ { -1, 0 }, { 1, 3 } })
M.P = M.A * M.B
M.I = M.A ^ -1
M.C = M.A ^ 3
M.K = 2 * M.A}

P = [ 1 6
−3 −3]= [1 2

2 −1]* [−1 0
1 3]

𝐴−1 = [1 0
0 1]

K = [2 4
4 −2]

23.4.3. Metamethod eq

Tests whether two matrices are equal. The result is true or false.
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23.5. Methods of the class matrix

Table 33: Matrix functions and methods.
Functions Reference

new(...) See [23.5.2; 23.1]
matrix.square() [23.5.6]
matrix.vector() [23.5.3]
matrix.row_vector() [23.5.4]
matrix.create()
matrix.identity() [23.5.7]
matrix.htm() [23.5.18]

Methods Reference

print(s,n)
htm_apply(...) [23.5.20]
get_htm_point() [23.5.19]
get() [23.5.11]
inverse() [23.5.12]
adjugate() [23.5.15]
transpose() [23.5.14]
is_diagonal() [23.5.9]
is_orthogonal() [23.5.8]
homogenization() [23.5.17]
gauss_jordan() [23.5.21]
rank() [23.5.22]
augment_right(B) [23.5.23]
submatrix(r1,r2,c1,c2) [23.5.23]

23.5.1. Method print

With the amsmath package loaded, this method can be used. By default, the bmatrix environment is selected,
although you can choose from matrix, pmatrix, Bmatrix, ”vmatrix”, ”Vmatrix”. Another option lets you set
the number of digits after the decimal point. The ”tkz_dc” global variable is used to set the number of decimal
places. Here’s an example:

\directlua{
init_elements()
M.n = matrix({ { math.sqrt(2), math.sqrt(3) }, { math.sqrt(4), math.sqrt(5) } })
M.n:print('pmatrix')}

(1.41 1.73
2 2.24)

You can also display the matrix as a simple array using the print_array (M) function. see the next example.
In the case of a square matrix, it is possible to transmit a list of values whose first element is the order of the
matrix.
\directlua{
init_elements()
M.s = matrix.square(2, 1, 0, 0, 2)
M.s:print()}

[1 0
0 2]

23.5.2. Function new

This is the main method for creating a matrix. Here’s an example of a 2x3 matrix with complex coefficients:
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\directlua{
init_elements()
a = point(1, 0)
b = point(1, 1)
c = point(-1, 1)
d = point(0, 1)
e = point(1, -1)
f = point(0, -1)
M.n = matrix({ { a, b, c }, { d, e, f } })
M.n:print()}

[1 1+𝑖 −1+𝑖
𝑖 1−𝑖 −𝑖 ]

23.5.3. Function matrix.vector

The special case of a column matrix, frequently used to represent a vector, can be treated as follows:
\directlua{
init_elements()
M.v = matrix.vector(1, 2, 3)
M.v:print()}

⎡
⎣

1
2
3
⎤
⎦

23.5.4. Function matrix.row_vector

M.rv = matrix.row_vector (1, 2, 3)
m.rv = [1 2 3]

23.5.5. Function matrix.create(n,m)

M.c = matrix.create (2, 3)

M.c = [0 0 0
0 0 0]

23.5.6. Function matrix.square(liste)

We have already seen this method in the presentation of matrices. We first need to give the order of the matrix,
then the coefficients, row by row.
\directlua{
init_elements()
M.s = matrix.square(2, 2, 3, -5, 4)
M.s:print()}

[ 2 3
−5 4]

23.5.7. Function matrix.identity

Creating the identity matrix order 3
\directlua{
init_elements()
M.Id_3 = matrix.identity(3)
M.Id_3:print()}

⎡
⎣

1 0 0
0 1 0
0 0 1

⎤
⎦

23.5.8. Method is_orthogonal

The method returns true if the matrix is orthogonal and false otherwise.

\directlua{
init_elements()
local cos = math.cos
local sin = math.sin
local pi = math.pi
M.A = matrix({ { cos(pi / 6), -sin(pi / 6) }, { sin(pi / 6), cos(pi / 6) } })
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M.A:print()
bool = M.A:is_orthogonal()
tex.print("\\\\")
if bool then
tex.print("The matrix is orthogonal")

else
tex.print("The matrix is not orthogonal")

end
tex.print("\\\\")
tex.print("Test: $M.A^T = M.A^{-1} ?$")
print_matrix(transposeMatrix(M.A))
tex.print("=")
inv_matrix(M.A):print()}

[0.87 −0.50
0.50 0.87 ]

The matrix is not orthogonal

Test: 𝑀.𝐴𝑇 =𝑀.𝐴−1? [ 0.87 0.50
−0.50 0.87]= [1 0

0 1]

23.5.9. Method is_diagonal

The method returns true if the matrix is diagonal and false otherwise.

23.5.10. Function print_array

We’ll need to display results, so let’s look at the different ways of displaying them, and distinguish the differences
between arrays and matrices.
Below, 𝐴 is an array. It can be displayed as a simple array or as a matrix, but we can’t use the attributes and
A:print() is not possible because 𝐴 is not an object of the class matrix. If you want to display an array like a
matrix you can use the function print_matrix (see the next example).
\directlua{
init_elements()
A = { { 1, 2 }, { 1, -1 } }
tex.print("A = ")
print_array(A)
tex.print(" or ")
print_matrix(A)
M.A = matrix({ { 1, 1 }, { 0, 2 } })
tex.print("\\\\")
tex.print("M = ")
M.A:print()}

A = {{ 1 , 2 },{ 1 , -1 }}or [1 2
1 −1]

M = [1 1
0 2]

23.5.11. Method get

Get an element of a matrix.
\directlua{
init_elements()
M.n = matrix{ { 1, 2 }, { 2, -1 } }
S = M.n:get(1, 1) + M.n:get(2, 2)
tex.print(S)}

0

23.5.12. Method inverse
\directlua{
init_elements()
M.A = matrix({ { 1, 2 }, { 2, -1 } })
tex.print("Inverse of $A = $")
M.B = M.A:inverse()
M.B:print()}

Inverse of 𝐴 = [1 0
0 1]
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23.5.13. Inverse matrix with power syntax

\directlua{
init_elements()
M.n = matrix({ { 1, 0, 1 }, { 1, 2, 1 }, { 0, -

1, 2 } })
tex.print("$M = $") print_matrix (M.n)
tex.print('\\\\')
tex.print("Inverse of $M = M^{-1}$")
tex.print('\\\\','=') print_matrix(M.n ^ -1)}

𝑀 = ⎡
⎣

1 0 1
1 2 1
0 −1 2

⎤
⎦

𝑀 =𝑀−1 = ⎡
⎣

1 0 0
0 1 0
0 0 1

⎤
⎦

23.5.14. Method transpose

A transposed matrix can be accessed with A: transpose () or with A^{'T'}.
\directlua{
init_elements()
M.A = matrix({ { 1, 2 }, { 2, -1 } })
M.AT = M.A:transpose()
tex.print("$A^{'T'} = $")
M.AT:print()}

𝐴 ′𝑇′ = [1 2
2 −1]

Remark: (A ^'T')^'T' = A

23.5.15. Method adjugate

\directlua{
init_elements()
M.N = matrix({ {1, 0, 3}, {2, 1, 0},

{-1, 2, 0} })
tex.print('N = ') print_matrix(M.N)
tex.print('\\\\')
M.N.a = M.N:adjugate()
M.N.i = M.N * M.N.a
tex.print('adj(M) = ') M.N.a:print()
tex.print('\\\\')
tex.print('N $\\times$ adj(N) = ')
print_matrix(M.N.i)
tex.print('\\\\')
tex.print('det(N) = ')
tex.print(M.N.det)}

N = ⎡
⎣

1 0 3
2 1 0
−1 2 0

⎤
⎦

adj(M) = ⎡
⎣

0 6 −3
0 3 6
5 −2 1

⎤
⎦

N × adj(N) = ⎡
⎣

15 0 0
0 15 0
0 0 15

⎤
⎦

det(N) = 15.0
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23.5.16. Method diagonalize

For the moment, this method only concerns matrices of order 2.
\directlua{
init_elements()
M.A = matrix({ { 5, -3 }, { 6, -4 } })
tex.print("A = ")
M.A:print()
M.D, M.P = M.A:diagonalize()
tex.print("D = ")
M.D:print()
tex.print("P = ")
M.P:print()
M.R = M.P ^ -1 * M.A * M.P
tex.print("\\\\")
tex.print("Test: $D = P^{-1}AP = $ ")
M.R:print()
tex.print("\\\\")
tex.print("Verification: $P^{-1}P = $ ")
M.T = M.P ^ -1 * M.P
M.T:print()}

A = [5 −3
6 −4]D = [2 0

0 −1]P = [1 1
1 2]

Test: 𝐷 =𝑃−1𝐴𝑃 = [2 −1
2 −2]

Verification: 𝑃−1𝑃 = [1 1
1 2]

23.5.17. Method homogenization

The goal of homogenization is to to be able to use a homogeneous transformation matrix
Let’s take a point 𝐴 such that z.A = point(2,-1). In order to apply a htm matrix, we need to perform a
few operations on this point. The first is to determine the vector (matrix) associated with the point. This is
straightforward, since there’s a point attribute called mtx which gives this vector:

z.A = point(2,0)
M.V = z.A.mtx:homogenization()

which gives:
\directlua{
init_elements()
pi = math.pi
M.h = matrix.htm(pi / 4, 3, 1)
z.A = point(2, 0)
M.V = z.A.mtx:homogenization()
z.A.mtx:print()
tex.print("then after homogenization: ")
M.V:print()}

[20]then after homogenization: ⎡
⎣

2
0
1
⎤
⎦

23.5.18. Function matrix.htm

Homogeneous transformation matrix.
There are several ways of using this transformation. First, we need to create a matrix that can associate a
rotation with a translation.
The main method is to create the matrix:

pi = math.pi
M.h = matrix.htm(pi / 4, 3, 1)

A 3x3 matrix is created which combines a 𝜋/4 rotation and a 𝑡 = (3,1) translation.

⎡
⎣

0.71 −0.71 3
0.71 0.71 1
0 0 1

⎤
⎦

Now we can apply the matrix M. Let 𝐴 be the point defined here: 23.5.17. By homogenization, we obtain the
column matrix 𝑉.
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M.W = M.A * M.V

⎡
⎣

0.71 −0.71 3
0.71 0.71 1
0 0 1

⎤
⎦
⎡
⎣

2
0
1
⎤
⎦
= ⎡

⎣

4.41
2.41
1

⎤
⎦

All that remains is to extract the coordinates of the new point.

23.5.19. Method get_htm_point

In the previous section, we obtained the 𝑊 matrix. Now we need to obtain the point it defines.
The method get_htm_point extracts a point from a vector obtained after applying a htm matrix.
\directlua{
init_elements()
pi = math.pi
M.h = matrix.htm(pi / 4 , 3 , 1)
z.A = point(2,0)
M.V = z.A.mtx:homogenization()
M.W = M.h * M.V
M.W:print()
z.P = get_htm_point(M.W)
tex.print("The affix of $P$ is: ")
tex.print(tkz.display(z.P))}

⎡
⎣

4.41
2.41
1

⎤
⎦
The affix of 𝑃 is: 4.41+2.41i

23.5.20. Method htm_apply

The above operations can be simplified by using the htm_apply method directly at point 𝐴.

z.Ap = M: htm_apply (z.A)

Then the method htm_apply transforms a point, a list of points or an object.
\directlua{
init_elements()
pi = math.pi
M.h = matrix.htm(pi / 4, 3, 1)
z.O = point(0, 0)
z.I = point(1, 0)
z.J = point(0, 1)
z.A = point(2, 0)
z.B = point(1, 2)
L.AB = line(z.A, z.B)
z.Op, z.Ip, z.Jp = M.h:htm_apply(z.O, z.I, z.J)
L.ApBp = M.h:htm_apply(L.AB)
z.Ap = L.ApBp.pa
z.Bp = L.ApBp.pb
z.K = point(2, 2)
T.IJK = triangle(z.I, z.J, z.K)
Tp = M.h:htm_apply(T.IJK)
z.Kp = Tp.pc}

𝑂

𝑂′

𝐴

𝐵
𝐴′

𝐵′

𝐼

𝐽

𝐼′𝐽′
𝐾

𝐾′

New cartesian coordinates system:
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\directlua{
init_elements()
pi = math.pi
tp = tex.print
nl = "\\\\"
a = point(1, 0)
b = point(0, 1)
M.R = matrix.htm(pi / 5, 2, 1)
M.R:print()
tp(nl)
M.v = matrix.vector(1, 2)
M.v:print()
M.v.h = M.v:homogenization()
M.v.h:print()
tp(nl)
M.V = M.R * M.v.h
M.V:print()
z.N = get_htm_point(M.V)
tex.print(tkz.display(z.N))}

⎡
⎣

0.81 −0.59 2
0.59 0.81 1
0 0 1

⎤
⎦

[12]
⎡
⎣

1
2
1
⎤
⎦

⎡
⎣

1.63
3.21
1

⎤
⎦
1.63+3.21i

23.5.21. Method gauss_jordan()

This method applies the Gauss–Jordan elimination algorithm to the matrix and returns its reduced row echelon
form (RREF).

The Gauss–Jordan algorithm transforms a matrix into an equivalent matrix by a sequence of elementary row
operations:

– swapping two rows;

– multiplying a row by a non-zero scalar;

– adding a multiple of one row to another.

The resulting matrix satisfies the following properties:

– each leading entry of a non-zero row is equal to 1;

– each leading 1 is the only non-zero entry in its column;

– all zero rows, if any, are at the bottom of the matrix.

Return value:
The method returns a new matrix object corresponding to the reduced row echelon form of the original matrix.
The original matrix is not modified.

Numerical considerations:
Since computations are performed using floating-point arithmetic, a numerical tolerance is used internally to
detect zero pivots. Very small values (typically below a fixed threshold) are treated as zero.

Typical uses:

– solving linear systems;

– computing the rank of a matrix;

– testing linear independence of vectors;

– computing the inverse of a square matrix (when it exists).
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Example with matrix 2x2:

[ 3 −1
−5 2 ]

\directlua{
M.A = matrix({{2,1},{5,3}})
M.Ainv = M.A:augment_right(matrix.identity(2))

:gauss_jordan()
:submatrix(1, 2, 3, 4)

M.Ainv:print()
}

Example with matrix 3x3:

⎡
⎣

0 0 1
−2 1 3
3 −1 −5

⎤
⎦

\directlua{
% Matrix 3x3
M.A = matrix({
{2, 1, 1},
{1, 3, 2},
{1, 0, 0}

})

% Inverse via augmentation + Gauss–Jordan
M.Ainv = M.A

:augment_right(matrix.identity(3))
:gauss_jordan()
:submatrix(1, 3, 4, 6)

% Print the inverse
M.Ainv:print()

}

23.5.22. Method rank()

This method returns the rank of the matrix, that is, the dimension of the vector space spanned by its rows (or
equivalently, by its columns).

The rank is computed using the Gauss–Jordan elimination process: it is equal to the number of non-zero rows
in the reduced row echelon form of the matrix.

Return value: The method returns a non-negative integer equal to the rank of the matrix.

Remarks:

– The rank is always less than or equal to the minimum of the number of rows and columns.

– A matrix has full rank if its rank is equal to this minimum.

– A square matrix is invertible if and only if its rank is maximal.

Numerical stability: As for gauss_jordan(), a numerical tolerance is used to decide whether a row should
be considered zero.

Note. The method rank() internally relies on the Gauss–Jordan reduction, but provides a direct and convenient
access to the rank without exposing the intermediate reduced matrix.
Example 1:

rank(A) =3 \directlua{
M.A = matrix({
{2, 1, 1},
{1, 3, 2},
{1, 0, 0}

})

tex.print("rank(A) = ", M.A:rank())
}

Example 2:
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rank(B) =2 \directlua{
M.B = matrix({
{1, 2, 3},
{2, 4, 6},
{1, 1, 1}

})

tex.print("rank(B) = ", M.B:rank())
}

Example 3:

rank(C) =2 \directlua{
M.C = matrix({
{1, 2, 3},
{2, 4, 6},
{1, 1, 1}

})

M.R = M.C:gauss_jordan()

tex.print("rank(C) = ", M.C:rank())
}

23.5.23. Augmented matrices and submatrices

The inversion of a square matrix and the resolution of linear systems are both based on the same fundamental
idea: the manipulation of an augmented matrix followed by a block extraction after a Gauss–Jordan reduction.

Augmented matrix. Let 𝐴 be an 𝑚×𝑛 matrix and 𝐵 an 𝑚×𝑝 matrix. The augmented matrix [𝐴 ∣ 𝐵] is
obtained by appending the columns of 𝐵 to the right of 𝐴:

[𝐴 ∣ 𝐵] =⎛
⎝

𝐴11 ⋯ 𝐴1𝑛 𝐵11 ⋯ 𝐵1𝑝
⋮ ⋮ ⋮ ⋮

𝐴𝑚1 ⋯ 𝐴𝑚𝑛 𝐵𝑚1 ⋯ 𝐵𝑚𝑝

⎞
⎠

.

In the matrix class, this operation is performed by the method augment_right.

Example (matrix inversion). Let

𝐴 =(2 1
5 3).

The augmented matrix [𝐴 ∣ 𝐼 ] is

(2 1 1 0
5 3 0 1).

Applying the Gauss–Jordan algorithm yields

(1 0 3 −1
0 1 −5 2 )= [𝐼 ∣ 𝐴−1],

from which the inverse matrix can be read directly.

Submatrix extraction. The method submatrix(r1, r2, c1, c2) extracts a rectangular block from a ma-
trix, defined by:

– rows from r1 to r2,

– columns from c1 to c2.

All indices start at 1.
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Meaning of submatrix(1,2,3,4). In the previous example, the reduced augmented matrix has:

– 2 rows,

– 4 columns.

The inverse matrix occupies:

– rows 1 to 2,

– columns 3 to 4.

Thus the extraction
submatrix(1,2,3,4)

returns exactly the block

𝐴−1 =( 3 −1
−5 2 ).

General rule. For a square matrix of order 𝑛, the inverse matrix is obtained by

[𝐴 ∣ 𝐼𝑛]
Gauss–Jordan−−−−−−−→ [𝐼𝑛 ∣ 𝐴−1],

and extracted using
submatrix(1, n, n+1, 2n).

Summary.

– augment_right constructs an augmented matrix,

– gauss_jordan performs the row reduction,

– submatrix extracts the desired result block.
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24. Class path

This class was developed in response to a question posted on tex.stackexchange.com [fill-a-space-made-by-
three-arcs].
The concept was missing from the package, although in some cases it was possible to work around this using
TikZ paths. When creating the conic class, I frequently had to manipulate tables of coordinates, so it became
natural to formalize these as paths.

\directlua{
z.O = point(0, 0)
z.A = point(8, 0)
z.E = z.O:rotation(2*math.pi / 3, z.A)
z.C = z.O:rotation(-2*math.pi / 3, z.A)
z.F, z.D, z.B = z.O:rotation(math.pi / 3, z.A, z.E, z.C)
L.AC = line(z.A, z.C)
L.OB = line(z.O, z.B)
L.OD = line(z.O, z.D)
L.CE = line(z.C, z.E)
L.AE = line(z.A, z.E)
L.OF = line(z.O, z.F)
z.G = intersection(L.AC, L.OB)
z.H = intersection(L.CE, L.OD)
z.I = intersection(L.AE, L.OF)
C.GA = circle(z.G, z.A)
C.FE = circle(z.F, z.E)
C.BA = circle(z.B, z.A)
C.IE = circle(z.I, z.E)
C.DE = circle(z.D, z.E)
C.FA = circle(z.F, z.A)
C.HE = circle(z.H, z.E)
C.GC = circle(z.G, z.C)
_,z.J = intersection(C.GA, C.FE)
_,z.K = intersection(C.BA, C.IE)
_,z.L = intersection(C.DE, C.IE)
_,z.M = intersection(C.FA, C.HE)
z.N = intersection(C.BA, C.HE)
z.P = intersection(C.DE, C.GC)
% the paths
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local nb = 40
PA.th1 = C.IE:path(z.E, z.L, nb) + C.DE:path(z.L, z.O, nb) - C.FA:path(z.E, z.O, nb)
PA.th2 = C.IE:path(z.G, z.A, nb) - C.FA:path(z.M, z.A, nb) - C.HE:path(z.G, z.M, nb)
PA.th3 = C.IE:path(z.H, z.K, nb) + C.BA:path(z.K, z.C, nb) - C.GC:path(z.H, z.C, nb)
PA.th4 = C.GA:path(z.A, z.J, nb) + C.FA:path(z.J, z.O, nb) - C.BA:path(z.A, z.O, nb)
PA.th5 = C.HE:path(z.C, z.N, nb) + C.BA:path(z.N, z.O, nb) - C.DE:path(z.C, z.O, nb)
PA.th6 = C.HE:path(z.I, z.E, nb) - C.DE:path(z.P, z.E, nb) - C.GA:path(z.I, z.P, nb)}
\begin{center}
\begin{tikzpicture}[scale = .5, rotate = -30]
\tkzGetNodes
\tkzFillCircle[fill=yellow!20](O,A)
\tkzDrawCircle[ultra thick,black](O,A)
\tkzClipCircle(O,A)
\tkzDrawCoordinates[draw,ultra thick,fill=green!15](PA.th1)
\tkzDrawCoordinates[draw,ultra thick,fill=green!15](PA.th2)
\tkzDrawCoordinates[draw,ultra thick,fill=blue!15](PA.th3)
\tkzDrawCoordinates[draw,ultra thick,fill=blue!15](PA.th4)
\tkzDrawCoordinates[draw,ultra thick,fill=red!15](PA.th5)
\tkzDrawCoordinates[draw,ultra thick,fill=red!15](PA.th6)
\tkzDrawCircle[ultra thick,black](O,A)
\end{tikzpicture}

\end{center}

In addition to manually constructing paths from a list of points, you can also automatically generate paths using
geometric classes. This is particularly useful when drawing arcs, segments, or interpolated curves. Currently,
the following classes provide built-in methods to generate path objects:

– line — segment interpolation between two points See [12.13.6]

– triangle — triangle outline as a path. See [14.11.2]

– circle — circular arcs between two points on the circumference See [13.10.3]

– conic — arcs or full curves parameterized. See [16.5.10]

These methods typically return a path object with a default or user-defined number of points. For instance:

PA.arc = C.OA:path(z.A, z.B, 40) -- circular arc from A to B on circle OA
PA.seg = L.AB:path(10) -- line segment from A to B with 10 points
PA.tri = T.ABC:path() -- triangle outline path
PA.co = CO.EL:points(0, 1, 50) -- conic arc from t=0 to t=1

These generated paths can be combined, reversed, filled, or used for TikZ decorations.

24.1. Overview

The path object represents an ordered sequence of 2D complex points, stored as TikZ-compatible strings in
the form ”(x,y)”. It supports geometric operations such as translation, homothety, and rotation, and can be
combined with other paths using Lua operator overloading.
The variable PA holds a table used to store paths. It is optional, and you are free to choose the variable name.
However, using PA is a recommended convention for clarity and consistency. If you use a custom variable (e.g.,
Paths), you must initialize it manually. The init_elements() function reinitializes the PA table if used.
When working with path objects—especially when several intermediate curves are involved—it is strongly
recommended to use indexed names such as PA.p1, PA.p2, etc., rather than a generic name.

Rule — Prefer explicit, indexed names: Using PA.p1, PA.p2, PA.result, etc., improves clarity,
avoids accidental overwriting, and ensures that all geometric data can be reset with a single call to .

tkz-elements AlterMundus



24. Class path 282

This approach aligns with the overall philosophy of tkz-elements, where named tables like PA, T, C, and L are
used to store structured geometric information. Indexing also helps make diagrams more readable, reproducible,
and easier to debug.
It supports arithmetic operations for combining and manipulating paths, as well as geometric transformations
such as translation, rotation, homothety, and reversal.

24.2. Notes

– Points are internally stored as strings like ”(x,y)”, and parsing is done via a utility function parse_point.

local x, y = utils.parse_point("(3.5, -2)")
-- x = 3.5, y = -2.0

– Number formatting (e.g., for TikZ compatibility) should be handled by checknumber, assumed to be
defined globally or in a utility module.

– The class is designed to be lightweight and compatible with TikZ/LuaLaTeX workflows.

24.3. Constructor

PA.name = path(table_of_points) -- Creates a new path object.

If data is provided, the input should be a table of points written as strings, e.g., { "(0,0)", "(1,0)", "(1,1)" }
otherwise creates an empty path.
Here is a path representing a simple triangle:

PA.triangle = path({ "(0, 0)", "(1, 0)","(1, 1)" })

24.4. Operator Overloading; metamethods

24.4.1. Table of metamethods

Table 34: Methods of the class vector.
Metamethods Reference

add(path1,path2) [24.4.2]
sub(path1,path2) [24.4.3]
unm(path1) [24.4.4]
tostring(path1) [24.4.5]

24.4.2. Metamethod add

If p1 and p2 are two paths, we can obtain a third path with p3 = p1:add(p2)
More easily with an operator
p3 = p1 + p2 — Concatenation
Returns a new path by appending p2 after p1.

24.4.3. Metamethod unm

p2 = p1:unm()
More easily with an operator
-p — Reversal
Returns a copy of the path in reverse order.
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24.4.4. Metamethod sub

If p1 and p2 are two paths, we can obtain a third path with p3 = p1:sub(p2)
More easily with an operator
p1 - p2 — Subtraction
Equivalent to p1 + (-p2) (concatenates p1 with the reversed p2).

24.4.5. Metamethod tostring

String Representation
The tostring metamethod provides a readable form, mainly for debugging:

tostring(p) --> path: { (x1,y1) , (x2,y2) , ... }

24.5. Methods

Table 35: Methods of the path class.
Method Reference

add_point(z) [24.5.1]
get(i) [24.5.2]
copy() [24.5.3]
count() [24.5.4]
translate(dx, dy) [24.5.5]
homothety(pt, k) [24.5.6]
rotate(pt, an) [24.5.7]
close() [24.5.8]
sub(i1, i2) [24.5.9]
show() [24.5.10]
add_pair_to_path(z1, z2, n) or add_pair [24.5.11]
concat(sep) [24.5.12]

24.5.1. Method add_point(pt,<n>)

This method appends a point to the path.

Arguments:

– pt: a point object.

– n (optional): number of decimal places used when formatting the point coordinates for TikZ output.

If n is provided, the coordinates are rounded to n decimal places before being stored in the path. If omitted, a
default formatting precision is used.

Note: The parameter n affects only the numerical representation in the generated TikZ code. It does not
modify the internal geometric computation. Adds a point (given as a complex table) to the path. Let’s take
one of the first examples:

path: (0,0) , (1,0) , (1,1) \directlua{
PA.triangle = path()
z.A = point(0, 0)
z.B = point(1, 0)
z.C = point(1, 1)
PA.triangle:add_point(z.A, 0)
PA.triangle:add_point(z.B, 0)
PA.triangle:add_point(z.C, 0)
tex.print(tostring(PA.triangle))}
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24.5.2. Method get(i)

The method get(i) returns the i-th point stored in the path PA.p.
Paths in tkz-elements store their points as formatted coordinate strings (e.g. ”(1.000,2.000)”) for compatibility
with TikZ and for efficient transfer from Lua to TEX. When get(i) is called, these coordinates are automatically
converted back into a proper Lua point object.

Return value:
A point object corresponding to the i-th element of the path.

Errors:
If the index is outside the valid range, an error is raised:

24.5.3. Method copy()

Returns a deep copy of the path
\directlua{
PA.p1 = path({ "(0, 0)", "(1, 0)","(1, 1)" })
PA.p2 = PA.p1:copy()
PA.p2:add_point(point(0, 0),0)}

\begin{tikzpicture}
\tkzDrawCoordinates(PA.p2)

\end{tikzpicture}

24.5.4. Method count()

Returns a deep copy of the path

4 \directlua{
PA.p1 = path({ "(0, 0)", "(1, 0)","(1, 1)" })
PA.p2 = PA.p1:copy()
PA.p2:add_point(point(0, 0),0)
tex.print(PA.p2:count())
}

24.5.5. Method translate(dx,dy)

Translates the path by a given vector (𝑑𝑥,𝑑𝑦)
\directlua{
PA.p1 = path({ "(0,0)", "(1,0)", "(1,1)" })
PA.p2 = PA.p1:translate(2,1)}

\begin{tikzpicture}
\tkzDrawCoordinates(PA.p2)
\end{tikzpicture}

24.5.6. Method homothety(pt,r)

Applies a homothety centered at 𝑝𝑡 with ratio 𝑘
\directlua{

z.O = point(0, 0)
PA.base = path({ "(0,0)", "(1,0)", "(1,1)" })
PA.scaled = PA.base:homothety(z.O, -2)}

\begin{tikzpicture}
\tkzGetNodes
\tkzDrawCoordinates(PA.base)
\tkzDrawCoordinates(PA.scaled)
\tkzDrawPoint(O)

\end{tikzpicture}
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24.5.7. Method rotate(pt, an)

Rotates the path around 𝑝𝑡 by angle 𝜃 (radians)
\directlua{

z.O = point(1, 1)
PA.base = path({ "(1,0)", "(2,0)", "(2,1)" })
PA.rotated = PA.base:rotate(z.O, math.pi / 2)}

\begin{tikzpicture}
\tkzGetNodes
\tkzDrawCoordinates(PA.base)
\tkzDrawCoordinates(PA.rotated)
\tkzDrawPoint(O)

\end{tikzpicture}

24.5.8. Method close()

Closes the path by repeating the first point at the end
\directlua{
PA.p = path({ "(0,0)", "(1,0)", "(1,1)" })
PA.closed = PA.p:close()}

\begin{tikzpicture}
\tkzDrawCoordinates[fill=green!20](PA.closed)

\end{tikzpicture}

24.5.9. Method sub(i1, i2)

Returns a subpath between two indices
\directlua{
PA.full = path({ "(0,0)", "(1,0)", "(1,1)", "(0,1)", "(0,0)" })
PA.part = PA.full:sub(2, 4)}

\begin{tikzpicture}
\tkzDrawCoordinates[fill=green!20](PA.part)

\end{tikzpicture}

24.5.10. Method show()

Prints the path in the terminal (for debugging)

(0,0)(1,0)(1,1) \directlua{
PA.p = path({ "(0,0)", "(1,0)", "(1,1)" })
PA.p:show()}

24.5.11. Method add_pair_to_path(p, p, n) or add_pair(p, p, n)

path:add_pair(z1, z2, decimals)

or equivalently:

path:add_pair_to_path(z1, z2, decimals)

Purpose:
The coordinates of z1 and z2 are extracted, formatted with a fixed number of decimals 𝑛, and combined into
a string "x1/y1/x2/y2" appended to the path. This string is then inserted into the current path table.This
method appends to a path object. a formatted point pair. It is mainly used to store segments, by keeping
together the coordinates of two points.

Arguments:

– z1, z2 – points given as tables {re, im}.

– decimals (optional) – number of decimals (default: 5).
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Returns:
Nothing (modifies the path in place).

Example usage:

local PA.p = path() -- empty path
local z.A = point(1, 2)
local z.B = point(3, 4)
PA.p:add_pair(z.A, z.B, 2)
-- PA.p = {"1.00/2.00/3.00/4.00"}

24.5.12. Method concat(sep)

This method returns a string obtained by concatenating all the coordinates stored in a path object. The
coordinates are joined in order using a separator.

Internally, a path contains an ordered Lua table of points written in TikZ syntax, such as (x,y). The concat
method simply joins these entries into a single textual path.

Syntax:

S = PA.myPath:concat(sep)

Arguments:

– sep — optional string used to separate the coordinates (default: a single space " ").

Returns: A Lua string containing all points of the path, separated by sep. The resulting string is suitable for
direct insertion into a TikZ path.
Example:

\directlua{
init_elements()
local A = point(0, 0)
local B = point(2, 1)
local C = point(3, 0)
local P = path:new()
P:add_point(A)
P:add_point(B)
P:add_point(C)
local S = P:concat(" -- ")
}

Usefulness:
This method is useful when:

– building TikZ paths dynamically from Lua;

– exporting or combining geometric paths;

– generating the argument of macros such as \tkzDrawPath.

24.5.13. Example : Director circle

Conics are drawn using the path tool.
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\directlua{
init_elements()
z.O = point(0, 0)
z.F1 = point(4, 1)
z.F2 = point(-4, -1)
z.H = point(4 * math.sqrt(2), 0)
local a = tkz.length(z.O, z.H)
CO.EL = conic(EL_bifocal(z.F2, z.F1, a))
PA.curve = CO.EL:points(0, 1, 50)
z.A = CO.EL.covertex
T.HOA = triangle(z.H, z.O, z.A)
z.P = T.HOA:parallelogram()
C.OP = circle(z.O, z.P)
z.L = C.OP:point(0.25)
T.LJ, T.LK = CO.EL:tangent_from(z.L)
z.J = T.LJ.pb
z.K = T.LK.pb}

𝐹1

𝐹2
𝑂 𝐻

𝐴 𝑃

𝐿

𝐽

𝐾

\begin{tikzpicture}
\tkzGetNodes
\tkzDrawPoints(F1,F2,O)
\tkzDrawCircles[teal](O,P)
\tkzDrawPolygon(H,O,A,P)
\tkzDrawCoordinates[smooth,cyan](PA.curve)
\tkzDrawSegments[orange](O,P O,L L,J L,K)
\tkzDrawPoints(F1,F2,O,H,A,P,L,J,K)
\tkzLabelPoints(F1,F2,O,H,A,P,L,J,K)
\end{tikzpicture}

24.5.14. Classic parabola

This example moves away from the concept of Euclidean geometry, but the method used can be reused. Here
we want to draw a parabola whose axis of symmetry is parallel to the y-axis. Knowing three of its points, we
can determine the equation. The set of points for tracing the parabola is obtained using the tools provided by
the path class.

\directlua{
init_elements()
z.a = point(1, 0)
z.b = point(3, 2)
z.c = point(0, 2)
local A, B, C = parabola(z.a, z.b, z.c)

function f(t0, t1, n)
local PA.tbl = path()
for t = t0, t1, (t1 - t0) / n do
local y = A * t ^ 2 + B * t + C
local pt = point(t, y)
PA.tbl:add_point(pt)

end
return PA.tbl

end} 𝑥

𝑦

\begin{tikzpicture}
\tkzGetNodes
\tkzInit[xmin = -2,xmax=4,ymin =-1,ymax=6]
\tkzDrawX\tkzDrawY
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\tkzDrawPoints[red,size=4pt](a,b,c)
\draw[smooth] plot coordinates {%
\directlua{tex.print(f(-1,3,100))}};
\end{tikzpicture}

24.6. Example with several paths

𝐴

𝐵 𝐶

\directlua{
z.O = point(0, 0)
z.A = point(5, 0)
C.OA = circle(z.O, z.A)
z.S = C.OA.south
C.SO = circle(z.S, z.O)
z.B, z.C = intersection(C.OA, C.SO)
C.BC = circle(z.B, z.C)
z.D = intersection(C.OA, C.BC)
C.CD = circle(z.C, z.D)

local p1 = C.SO:path(z.C, z.B, 50)
local p2 = C.BC:path(z.C, z.D, 50)
local p3 = C.CD:path(z.D, z.B, 50)
thepath = (-p1) + p2 + p3 }

\begin{tikzpicture}[scale=.5]
\tkzGetNodes
\tkzDrawCircles(O,A S,O)
\tkzDrawArc(B,C)(D)
\tkzDrawArc(C,D)(B)
\tkzDrawCoordinates[fill = purple!20,

opacity=.4](thepath)
\tkzDrawCoordinates[smooth,red,thick](thepath)
\tkzDrawPoints(A,O,B,C,S,D)
\tkzLabelPoints(A,B,C)

\end{tikzpicture}

25. Class list_point

The variable LP holds a table used to store list_point objects. Its use is optional, and users are free to choose
any variable name.

However, for the sake of consistency and readability throughout the documentation, it is recommended to use
the predefined variable LP. The function init_elements() automatically reinitializes this table.

The list_point class represents an ordered list of points. It is primarily intended as a lightweight container
used to store and manipulate multiple points produced by geometric constructions, intersections, or iterative
algorithms.
Unlike geometric objects such as lines or circles, a list_point object does not define intrinsic geometry. Its
purpose is to facilitate grouping, iteration, and data transfer between Lua and TikZ.

A list_point object behaves like a Lua table indexed by integers, while providing a set of convenience methods
adapted to geometric workflows.

25.1. Attributes

Table 36: list_point attributes.
Attribute Meaning Reference

n [25.1.1]
items [25.1.2]
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25.1.1. Attribute n

The attribute n denotes the number of points stored in the list. In practice, it corresponds to the Lua length
operator #P (array part).

25.1.2. Attribute items

The attribute items refers to the ordered sequence of points stored in the list. Individual points are accessed
using standard Lua indexing, e.g. P[i].

25.2. Creating an object

25.2.1. Method new(...)

Creates a new list_point object.
In user code, the recommended constructor is the callable form list_point(...). Internally, this calls the
method new(...).

A list_point object can be created either as a local Lua variable or as an entry of the table LP, which is
reserved for storing lists of points.

local P = list_point()
LP.Q = list_point(z.A, z.B, z.C)

Both forms are valid and produce independent list_point objects.

Using a local variable is convenient for temporary computations or intermediate results. However, for objects
intended to be reused, transferred to TikZ, or accessed outside a local scope, it is recommended to store them
in the LP table.

The function init_elements() automatically reinitializes the LP table.

25.3. Methods or Basic accessors

Table 37: list_point methods.
Method Reference

Constructor

new(...) [25.2.1]

Methods Returning a Integer Number

len() [25.3.1]

Methods Returning a Point

get(i) [25.3.2]
barycenter() [25.6.1]

Methods Returning a List_Point

add(p) [25.4.1]
extend(pl) [25.4.2]
map(f) [25.5.2]

unpack() [25.3.3]
clear() [25.4.3]
foreach(f) [25.5.1]
bbox() [25.6.2]
to_path() [25.7.1]

25.3.1. Method len()

Returns the number of points stored in the list.
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25.3.2. Method get(i)

Returns the point at index i.

25.3.3. Method unpack()

Returns all points as separate values using table.unpack. This method is useful when interfacing with functions
expecting individual point arguments.

\directlua{
init_elements()
LP = list_point()
LP:add(point(0,0))
LP:add(point(1,0))
LP:add(point(1,1))
z.A, z.B, z.C = LP:unpack()
}
\begin{center}
\begin{tikzpicture}
\tkzGetNodes
\tkzDrawPolygon(A,B,C)
\end{tikzpicture}
\end{center}

25.4. Modification methods

25.4.1. Method add(p)

Appends the point p to the list and returns the object itself.

25.4.2. Method extend(pl)

Appends all points from another list_point object pl.

25.4.3. Method clear()

Removes all points from the list.
These methods modify the object in place and allow method chaining.

25.5. Iteration helpers

25.5.1. Method foreach(f)

Applies the function f(p, i) to each point p with its index i.

25.5.2. Method map(f)

Applies the function f(p, i) to each point and returns a new list_point object containing the results.
These methods support a functional programming style for geometric transformations.

25.6. Geometric utilities

25.6.1. Method barycenter()

Returns the barycenter (centroid) of all points in the list. If the list is empty, the method returns nil.

25.6.2. Method bbox()

Returns the bounding box of the point set as four numbers:

(𝑥min,𝑦min,𝑥max,𝑦max)
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25.7. TikZ output

25.7.1. Method to_path()

Converts the list of points into a TikZ path string of the form

(𝑥1,𝑦1)−−(𝑥2,𝑦2)−−…

suitable for drawing with TikZ commands.

This class provides a minimal yet effective bridge between Lua computations and TikZ drawing instructions.

25.8. Examples

25.8.1. Temporary list of points

This example illustrates the use of a local list_point object to store temporary results inside a computation.

local P = list_point()
for i = 1, 10 do

P:add(z.A + i * (z.B - z.A) / 10)
end
local G = P:barycenter()

The list P is used only locally to compute the barycenter of a set of points.

25.8.2. Storing construction results in LP

This example shows how to store a list of intersection points for later use.

LP.I = list_point()
local X, Y = intersection(L.AB, C.circ)
LP.I:add(X)
LP.I:add(Y)

Storing the points in LP makes them accessible for drawing or further constructions.

25.8.3. Iterative construction

A typical use case is the progressive construction of a family of points.

LP.P = list_point()
for i = 0, 24 do

local t = i / 24
LP.P:add(L.AB:point(t))

end

The list LP.P contains a discrete sampling of a segment.

25.8.4. Functional transformation

This example uses the map method to transform a set of points.

local P = list_point(z.A, z.B, z.C)
LP.Q = P:map(function(p)

return rotation_(p, tkz.tau / 3, z.O)
end)

The original list P is preserved, while LP.Q stores the transformed points.
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25.8.5. Conversion to a TikZ path

This example illustrates the interaction between list_point and TikZ.

LP.P = list_point(z.A, z.B, z.C)
local path = LP.P:to_path()

The string returned by to_path can be passed directly to TikZ drawing commands.

25.8.6. From list_point to path and drawing with tkz-euclide

This example shows a typical workflow: compute a list of points in Lua, convert it into a path, and then draw
the resulting points with tkzDrawPointsFromPath.

\directlua{
init_elements()
z.A = point(0, 0)
z.B = point(8, 6)
L.AB = line(z.A, z.B)
% list of sampled points
LP.P = list_point()
for i = 0, 12 do
LP.P:add(L.AB:point(i/12))

end
% convert list_point -> path
PA.sample = path()
for i = 1, LP.P:len() do
PA.sample:add_point(LP.P:get(i))

end
}
\begin{center}
\begin{tikzpicture}
\tkzGetNodes
% draw the points stored in the path
\tkzDrawPointsFromPath(PA.sample)
\end{tikzpicture}
\end{center}

The points are stored in LP.P for later reuse, while PA.sample contains the corresponding TikZ path represen-
tation used for drawing.
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26. Class angle

The angle class is an experimental helper object used to represent an angle defined by three points. It is
currently self-contained and does not interact with other classes. Its main purpose is to provide a simple and
direct interface for obtaining:

– the oriented angle in radians,

– the normalised oriented angle in [0,2𝜋]

– the interior (non-oriented) angle,

– the measure of the interior angle in degrees.

An angle object is static: all values are computed at creation time and never updated.

26.1. Creating an object

local alpha = angle(z.A, z.B, z.C) -- equivalent to angle:new(A,B,C)
local beta = angle(z.B, z.C, z.A)
local gamma = angle(z.C, z.A, z.B)

The three arguments are:

– : the vertex of the angle,

– : the first point defining the first ray,

– : the second point defining the second ray.

26.2. Attributes

The following attributes are stored inside every angle object:

Table 38: Angle attributes.
Attribute Meaning Reference

ps Vertex of the angle [26.2]
pa First defining point (ray [𝑝𝑠𝑝𝑎]) [26.2]
pb Second defining point (ray [𝑝𝑠𝑝𝑏]) [26.2]
raw Oriented angle (radians), may be negative [26.2]
value Non-oriented angle in the range [0,𝜋] [26.2]
deg Interior angle in degrees [26.2]

ps The vertex (summit) of the angle.

pa A point defining the first ray [𝑝𝑠𝑝𝑎].

pb A point defining the second ray [𝑝𝑠𝑝𝑏].

raw The oriented angle in radians as returned by get_angle_(ps,pa,pb); it may be negative.

norm The oriented angle normalised to the interval [0,2𝜋).
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value Returns the interior (non-oriented) angle in the range [0,𝜋]:
Example:

𝑂

𝑇

𝑀

0.817

\directlua{%
init_elements()
z.O = point(0, 1)
z.T = point(2, 2)
C.OT = circle(z.O, z.T)
z.M = C.OT:point(.13)
A.OTM = angle(z.O, z.T, z.M)
tkzA = A.OTM.value}

\begin{center}
\begin{tikzpicture}

\tkzGetNodes
\tkzDrawLines(O,T O,M)
\tkzDrawCircle(O,T)
\tkzDrawPoints(O,T,M)
\tkzLabelPoints(O,T,M)
\tkzMarkAngle(T,O,M)
\tkzLabelAngle[pos=1.5](T,O,M){%
\tkzPN[3]{\tkzUseLua{tkzA}}}

\end{tikzpicture}
\end{center}

deg Returns an interior angle in degrees.
Example:

Angle at A = 45.0 degrees

𝐴 𝐵

𝐶

\directlua{
init_elements()
z.A = point(0,0)
z.B = point(3,0)
z.C = point(1,2)
A.alpha = angle(z.B, z.A, z.C)
tex.print("Angle at A = "..A.alpha.deg.." degrees")

}
\begin{center}
\begin{tikzpicture}
\tkzGetNodes
\tkzDrawPolygon(A,B,C)
\tkzDrawPoints(A,B,C)
\tkzLabelPoints(A,B)
\tkzLabelPoints[above](C)

\end{tikzpicture}
\end{center}

Also possible:

T.ABC = triangle(z.A, z.B, z.C)
local val = T.ABC.alpha_.deg

All values are numerical scalars and remain fixed once the object is created.
Example:
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A(value) = 0.58800260354757
A(raw) = -0.58800260354757
A(deg) = 33.69006752598

𝐴 𝐶

𝐵

\directlua{
init_elements()
z.A = point(0, 0)
z.C = point(3, 0)
z.B = point(3, 2)
T.ABC = triangle(z.A, z.B, z.C)
A.A = T.ABC.alpha_
A.B = T.ABC.beta_
T.C = T.ABC.gamma_
tex.print("A(value) = \\", A.A.value)
tex.print('\\\\')
tex.print("A(raw) = \\", A.A.raw)
tex.print('\\\\')
tex.print("A(deg) = \\", A.A.deg)}

\begin{center}
\begin{tikzpicture}

\tkzGetNodes
\tkzDrawPolygon(A,B,C)
\tkzDrawPoints(A,B,C)
\tkzLabelPoints(A,C)
\tkzLabelPoints[above](B)

\end{tikzpicture}
\end{center}

26.3. Methods

Table 39: angle methods.
Methods Reference

Creation

angle(ps, pa, pb) [26.1]

Accessors

get() [26.3.1]

Tests

is_direct() [26.3.2]

26.3.1. get()

Returns the three defining points:

local ps, pa, pb = alpha:get()

26.3.2. is_direct()

Returns true when the angle is positive (counterclockwise orientation).

This class is experimental and may evolve in future versions.
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27. Intersections

The intersection function is an essential geometric tool. It computes the intersection of two geometric objects,
which may belong to the following classes:

– line with line,

– line with circle,

– circle with circle,

– line with conic.

Note that circle is a distinct class from conic. The conic class includes parabolas, hyperbolas, and ellipses.

The function takes a pair of objects as arguments, regardless of order. The result typically consists of one or
two points, depending on the geometric configuration. If there is no intersection, the function may return false
or _, depending on the context.

When two intersection points exist and you either:

– already know one of them, or

– want to select the one closest to a reference point,

you may use optional keys in the opts table.
In addition, numerical robustness can be controlled through an optional tolerance parameter eps, also stored
in opts.

27.1. Optional arguments: known, near, and EPS

The function intersection(X, Y, opts) computes the intersection between two geometric objects X and Y.
The optional table opts may contain the following keys:

– known (𝑝𝑜𝑖𝑛𝑡)
This option is used when one of the two intersection points is already known. The function will return
the other solution as the first value. This is particularly useful in constructions where one intersection is
already defined:

z.X, z.Y = intersection(C1, C2, {known = z.Y})

If z.Y is one of the intersection points, the function ensures that z.X receives the other.

– near (𝑝𝑜𝑖𝑛𝑡)
With this option, the function returns first the solution closest to the given reference point:

z.A, z.B = intersection(C1, L, {near = z.O})

Here, z.A will be the intersection point closest to z.O.

– EPS (𝑛𝑢𝑚𝑏𝑒𝑟)
This optional key sets the numerical tolerance used internally when determining whether objects intersect,
touch, or are tangential. If omitted, the global value tkz.epsilon is used:

z.A, z.B = intersection(C1, C2, {eps = 1e-6})

This option improves robustness in configurations involving near-tangency or small numerical uncertain-
ties.
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If none of these options is supplied, the intersection points are returned in the default order determined by the
geometric computation, and the global tolerance tkz.epsilon is used.

Note: These options only affect cases where the intersection returns multiple points. For single-point intersec-
tions (e.g., tangency), the result is unaffected. The eps option however always controls the numerical tolerance
used internally.

Compatibility note: For convenience and backward compatibility, the third argument of intersection may
also be a numerical tolerance:

z.A, z.B = intersection(C1, C2, 1e-5)

In this case, the number is interpreted as the value of eps, and no other option is provided. The recommended
modern form is:

z.A, z.B = intersection(C1, C2, {eps = 1e-5})

27.2. Line-line

The result is of the form: point or false.
\directlua{
init_elements()
z.A = point(1, -1)
z.B = point(4, 1)
z.C = point(2, 1)
z.D = point(4, -2)
z.I = point(0, 0)
L.AB = line(z.A, z.B)
L.CD = line(z.C, z.D)
x = intersection(L.AB, L.CD)
if x == false then
tex.print("error")

else
z.I = x

end}

\begin{tikzpicture}
\tkzGetNodes
\tkzDrawSegments(A,B C,D)
\tkzDrawPoints(A,B,C,D,I)
\tkzLabelPoints(A,B,C,D,I)

\end{tikzpicture}

𝐴

𝐵𝐶

𝐷

𝐼
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27.3. Line-circle

The result is of the form: point,point or false,false. If the line is tangent to the circle, then the two
points are identical. You can ignore one of the points by using the underscore: _, point or point, _. When
the intersection yields two solutions, the order of the points is determined by the argument of (z.p - z.c)
with c center of the circle and p point of intersection. The first solution corresponds to the smallest argument
(arguments are between 0 and 2𝜋).
\directlua{
init_elements()
z.A = point(1, -1)
z.B = point(1, 2)
L.AB = line(z.A, z.B)
z.O = point(2, 1)
z.D = point(3, 1)
z.E = point(3, 2)
L.AE = line(z.A, z.E)
C.OD = circle(z.O, z.D)
z.I, _ = intersection(L.AB, C.OD)
_, z.K = intersection(C.OD, L.AE)}

\begin{tikzpicture}
\tkzGetNodes

\tkzDrawLines(A,B A,E)
\tkzDrawCircle(O,D)
\tkzDrawPoints(A,B,O,D,I,K)
\tkzLabelPoints[left](A,B,O,D,I,K)

\end{tikzpicture}

𝐴

𝐵

𝑂 𝐷𝐼

𝐾
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27.4. Circle-circle

The result is of the form: point,point or false,false. If the circles are tangent, then the two points are
identical. You can ignore one of the points by using the underscore: _ , point or point , _. As for the
intersection of a line and a circle, consider the argument of z.p-z.c with c center of the first circle and p point
of intersection. The first solution corresponds to the smallest argument (arguments are between 0 and 2𝜋).
\directlua{
init_elements()
z.A = point(1, 1)
z.B = point(2, 2)
z.C = point(3, 3)
z.D = point(3, 0)
C.AB = circle(z.A, z.B)
C.CB = circle(z.C, z.B)
z.I, _ = intersection(C.AB, C.CB)
C.DC = circle(z.D, z.C)
z.J, z.K = intersection(C.DC, C.CB)}
\begin{tikzpicture}

\tkzGetNodes
\tkzDrawCircles(A,B C,B D,C)
\tkzDrawPoints(A,I,C,D,J,K)
\tkzLabelPoints(A,I,C,D,J,K)

\end{tikzpicture}

𝐴

𝐼

𝐶

𝐷

𝐽𝐾

Other example: 4.4
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27.5. Line-conic

The following example is complex, but it shows the possibilities of Lua. The designation of intersection points
is a little more complicated than the previous one, as the argument characterizing the major axis must be taken
into account. The principle is the same, but this argument must be subtracted. In concrete terms, you need to
consider the slopes of the lines formed by the center of the ellipse and the points of intersection, and the slope
of the major axis.

\directlua{
init_elements()
z.a = point(5, 2)
z.b = point(-4, 0)
L.ab = line(z.a, z.b)
z.c = L.ab.mid
z.v = L.ab:point(-0.2)
local a = tkz.length(z.c, z.v)
local c = 0.5 * tkz.length(z.a, z.b)
local e = c / a
z.K = L.ab:report(a ^ 2 / c, z.c)
z.Kp = (z.K - z.a):orthogonal(2):at(z.K)
L.dir = line(z.K, z.Kp)
CO.EL = conic(z.b, L.dir, e)
PA.EL = CO.EL:points(0, 1, 50)
z.m = point(2, 4)
z.n = point(4, 4)
L.mn = line(z.m, z.n)
z.r, z.s = intersection(CO.EL, L.mn)}

𝑎

𝑏

𝑐

𝑟𝑠

\begin{tikzpicture}[scale =.5]
\tkzGetNodes
\tkzDrawLines[red](a,b r,s)
\tkzDrawSegments(c,r c,s)
\tkzDrawPoints(a,b,c,r,s)
\tkzLabelPoints(a,b,c,r,s)
\tkzDrawCoordinates[smooth,red](PA.EL)
\tkzFillAngles[green!30,opacity=.4](v,c,s)
\tkzFillAngles[green!80,opacity=.4](v,c,r)

\end{tikzpicture}

27.5.1. Intersection all subtypes of conics

\directlua{
init_elements()
z.A = point(0, 0)
z.B = point(4, -2)
L.dir = line(z.A, z.B)
z.F = point(2, 2)
CO.EL = conic(z.F, L.dir, 0.8)
CO.PA = conic(z.F, L.dir, 1)
CO.HY = conic(z.F, L.dir, 1.2)
PA.EL = CO.EL:points(0, 1, 50)
PA.PA = CO.PA:points(-5, 5, 50)
PA.HY = CO.HY:points(-5, 5, 50)
z.K = CO.EL.K
z.u, z.v = CO.EL.major_axis:get()
z.x = L.dir:report(-4, z.K)
z.y = L.dir:report(4, z.K)
z.r = point(0, 4)
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z.s = point(4, 1)
L.rs = line(z.r, z.s)
z.u_1, z.u_2 = intersection(L.rs, CO.EL)
z.v_1, z.v_2 = intersection(L.rs, CO.PA)
z.w_1, z.w_2 = intersection(L.rs, CO.HY)}
\begin{tikzpicture}
\tkzGetNodes
\tkzDrawCoordinates[smooth](PA.EL)
\tkzDrawCoordinates[smooth](PA.PA)
\tkzDrawCoordinates[smooth](PA.HY)
\tkzDrawLines[add =.5 and .5](r,s u,v)
\tkzDrawLines(x,y)
\tkzDrawPoints[red](u_1,u_2,v_2,v_1,w_1,w_2)
\end{tikzpicture}

27.5.2. Intersection line-parabola, explained

In this example, we’re looking for a parabola inscribed in a triangle, i.e. tangent to the triangle’s three sides. I
won’t go into detail about the first part to obtain the parabola. You’ll notice this line

L.euler = T:euler_line():swap_line()

it swaps the ends of the Euler line, as we’ll see later.
To construct the points of contact, it is necessary to find the intersections of the parabola with the sides:

z.ta = intersection(PA, T.bc)
z.tb = intersection(PA, T.ca)
z.tc = intersection(PA, T.ab)
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We will now detail how to determine the intersection of a line (𝑎𝑏) with the parabola. In this case, Euler’s
line serves as the directrix of the parabola. Its points have been swapped to maintain the correct order of
abscissas—that is, negative values on the left and positive values on the right.
To simplify calculations, it is useful to change the coordinate system by setting the vertex of the parabola as
the origin. The focal axis (major_axis), oriented from 𝐾 to 𝐹, becomes the ordinate axis, while the abscissa
axis is chosen so that the new system is direct.
I have kept z.U = OCCS.x and z.V = OCCS.y in the code to visualize the new coordinate system, for example,
using \tkzDrawSegments[red,->](S,U S,V). This new system is created with:

O.SKF = occs(L.KF,z.S)

The line (𝐾𝐹), the axis of symmetry of the parabola, becomes the ordinate axis. In this new coordinate system,

the equation of the parabola is 𝑦 = 𝑥2

2𝑝
, where 𝑝 is the distance 𝐾𝐹, also known as the latus rectum.

The coordinates method of the occs class allows you to obtain the new coordinates of each point. The
param_line function calculates the coefficients of the line’s equation (this function is currently internal and
its name may change). Then, solve_para_line is used to find the common points between the line and the
parabola (again, this function is internal and subject to modification).
The result is two abscissas that must be placed on the axis passing through 𝑆 and orthogonal to the focal axis.
This is why it was important to position the curve correctly. If you remove swap_line for Euler’s line, you will
see that the curve becomes the reflection of the previous one. While the parabola remains unchanged overall,
the intersection points will not.
Finally, the abscissas of the intersection points must be placed, and then the intersections of the lines orthogonal
to Euler’s line passing through these abscissas with the line (𝑎𝑏) must be determined.
Note: This geometric method is more appropriate than determining the intersection points’ coordinates using
formulas. Indeed, those coordinates would be expressed in the new coordinate system, requiring an additional
transformation to return to the original system.

\directlua{
init_elements()
z.A = point(0, 0)
z.B = point(6, 0)
z.C = point(2, 3)
T.ABC = triangle(z.A, z.B, z.C)
L.euler = T.ABC:euler_line():swap_line()
z.F = T.ABC:kimberling(110)
z.H = T.ABC.orthocenter
z.O = T.ABC.circumcenter
z.Ω = point(0, 0)
z.i = point(1, 0)
z.j = point(0, 1)
CO.PA = conic(z.F, L.euler, 1)
PA.curve = CO.PA:points(-3.5, 5.5, 50)
local p = CO.PA.p
z.K = CO.PA.K
z.S = tkz.midpoint(z.F,z.K)
L.KF = CO.PA.major_axis
z.ta = intersection(CO.PA,T.ABC.bc)
z.tb = intersection(CO.PA,T.ABC.ca)
z.tc = intersection(CO.PA,T.ABC.ab)

% new occs
O.SKF = occs(L.KF, z.S)
z.U = O.SKF.x
z.V = O.SKF.y

% line a,b
z.a = point(3, 6)
z.b = point(8, -1)
L.ab = line(z.a, z.b)
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% coordinates in the new occs
Xa,Ya = O.SKF:coordinates(z.a)
Xb,Yb = O.SKF:coordinates(z.b)

% solve in the new occs
local r,s = tkz.line_coefficients(Xa, Ya ,Xb, Yb)
r1,r2 = tkz.solve_quadratic_(1, -2 * p * r, -2 * p * s)
z.x = O.SKF.abscissa:report(r1, z.K)
z.y = O.SKF.abscissa:report(r2, z.K)
L1 = L.euler:ortho_from(z.x)
L2 = L.euler:ortho_from(z.y)
z.s_1 = intersection(L.ab, L1)
z.s_2 = intersection(L.ab, L2)}
\begin{tikzpicture}
\tkzGetNodes
\tkzDrawCoordinates[smooth,purple,thick](PA.curve)
\tkzDrawLines[add = .2 and 1](A,B A,C B,C K,F O,H)
\tkzDrawPolygon[thick,cyan](A,B,C)
\tkzDrawSegment[blue](a,b)
\tkzDrawPoints(F,K,H,S,O)
\tkzDrawPoints(A,B,F,K,S,ta,tb,tc)
\tkzDrawPoints[red,size=2](s_1,s_2)
\tkzLabelPoints[red,above](s_1)
\tkzLabelPoints[red,right](s_2)
\tkzLabelPoints(F,S,O,A,B)
\tkzLabelPoints[above](C)
\tkzLabelPoints[left](H,K)
\end{tikzpicture}

𝑠1

𝑠2

𝐹
𝑆

𝑂𝐴 𝐵

𝐶

𝐻

𝐾
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28. Global Variables and constants

This module defines default values and mathematical constants used for precision control and symbolic compu-
tations in tkz-elements.

28.1. Global Variables

Table 40: Default settings and constants.
Variable Description

tkz.nb_dec Number of decimals used for formatting (default: 10)
tkz.epsilon Tolerance used for floating-point comparisons (10−tkz.nb_dec)
tkz.dc Number of decimals shown in output (default: 2)

Constant Description

tkz.phi Golden ratio 𝜑 = 1+√5
2

tkz.invphi Inverse golden ratio 1/𝜑 =
√5−1

2
tkz.sqrtphi Square root of the golden ratio √𝜑
tkz.pt 254 / 7227
tkz.deg math.pi /1 80
tkz.rad 180 / math.pi

28.2. Functions

Table 41: Functions related to settings.
Function Reference

tkz.reset_defaults() Section 28.2.1
tkz.set_nb_dec(n) Section 28.2.2

28.2.1. Function reset_defaults()

Restores default values for numerical precision and formatting:

– tkz.nb_dec = 10

– tkz.epsilon = 1e-10

– tkz.dc = 2

28.2.2. Function tkz.set_nb_dec(n)

Sets the number of decimals used in floating-point comparisons and updates the tolerance accordingly:

– tkz.nb_dec = 𝑛

– tkz.epsilon = 10−𝑛
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29. Various functions

In addition to object-oriented constructions, the package provides a collection of auxiliary functions. These
functions are not strictly required but serve to simplify many geometric operations and shorten code. Their use
depends on the context, but in the spirit of the package, it’s preferable to use objects.

They allow:

– direct geometric computation without having to define intermediate objects (e.g., lines or triangles),

– quick tests (alignment, orthogonality),

– or access to commonly used constructs (midpoints, barycenters, bisectors).

These tools follow the same convention as the rest of the package and accept either point objects or complex
numbers (when appropriate). They are typically used in Lua code blocks when you want to keep your scripts
minimal and avoid explicit variable declarations.

Example:
To compute the midpoint of a segment without defining the line:

z.M = tkz.midpoint(z.A, z.B)

This avoids having to define L.AB = line(z.A, z.B) and then access L.AB.mid.
Overview: The table below summarizes the available functions:

Table 42: Functions.
Functions Reference

tkz.length(z1, z2) [29.1]
tkz.midpoint(z1, z2) [29.2]
tkz.midpoints(z1, z2, ..., zn) [29.2]
tkz.is_linear(z1, z2, z3) [29.13]
tkz.is_ortho(z1, z2, z3) [29.13]
tkz.bisector(z1, z2, z3) [29.3; 29.14; 29.6]
tkz.bisector_ext(z1, z2, z3) [29.14]
tkz.altitude(z1, z2, z3) [29.14]
tkz.get_angle(z1, z2, z3) [29.6]
tkz.inner_angle(z1, z2, z3) [29.7]
tkz.angle_normalize(an) [29.8]
tkz.get_angle_normalize [29.10]
tkz.angle_between_vectors [29.17]
tkz.barycenter ({z1,n1},{z2,n2}, ...) [29.4]
tkz.dot_product(z1, z2, z3) [29.12]
tkz.parabola(pta, ptb, ptc) [29.18]
tkz.nodes_from_paths 29.19
tkz.fsolve(f, a, b, n [, opts]) 29.20
tkz.derivative(f, x0 [, accuracy]) 29.21

29.1. Length of a segment

The function tkz.length(z1, z2) returns the Euclidean distance between two points. It is equivalent to:

point.abs(z1 - z2)

This shortcut allows you to compute the length of a segment without manipulating complex numbers explicitly.

Alternative:
If you need to define the segment as a line object for later use (e.g., to draw it or to access other attributes
such as the midpoint or direction), you can use:
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L.AB = line(z.A, z.B)
l = L.AB.length

Recommendation:
Use tkz.length(z1, z2) for simple distance computations, especially within calculations or conditions. If
you’re building a full construction and need more geometric attributes, prefer defining the segment explicitly
as a line object.

29.2. Midpoint and midpoints

As with length, the function tkz.midpoint(z1, z2) provides a shortcut for computing the midpoint of a
segment:

z.M = tkz.midpoint(z.A, z.B)

This is equivalent to creating a line object and accessing its midpoint:

L.AB = line(z.A, z.B)
z.M = L.AB.mid

Polygonal midpoints: To compute the midpoints of a polygonal chain, use the function tkz.midpoints(...).
This function returns the midpoints of each successive segment: 𝑧1𝑧2, 𝑧2𝑧3, ..., 𝑧𝑛−1𝑧𝑛.

z.MA, z.MB, z.MC = tkz.midpoints(z.A, z.B, z.C, z.D)

Medial triangle: For triangles, it is often useful to compute the medial triangle — the triangle formed by
the midpoints of the sides. After defining a triangle object:

T.abc = triangle(z.a, z.b, z.c)
z.ma, z.mb, z.mc = T.abc:medial()

This is equivalent to calling midpoints directly:

z.mc, z.ma, z.mb = tkz.midpoints(z.a, z.b, z.c)

If you already have a triangle object, you may also write:

z.mc, z.ma, z.mb = tkz.midpoints(T.ABC:get())

This avoids the need to extract the triangle’s vertices manually, but T.abc:medial() is preferable.

Recommendation:
Use midpoint or midpoints for quick calculations when no object is needed. Prefer object methods like
medial() when working within a structured construction.

29.3. Bisectors

The functions tkz.bisector(z1, z2, z3) and tkz.bisector_ext(z1, z2, z3) define internal and external
angle bisectors, respectively, for a given vertex.
These functions return a line object that represents the bisector of angle 𝑧2𝑧1𝑧3, originating from point z1.

Internal bisector: This defines the internal bisector of angle 𝐵𝐴𝐶, starting at z.A. The resulting line is
stored as L.Aa.

L.Aa = tkz.bisector(z.A, z.B, z.C)
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External bisector:
This defines the external bisector at vertex z.A. It is orthogonal to the internal one and also originates at z.A.

L.Aa = tkz.bisector_ext(z.A, z.B, z.C)

Recommendation: Use these functions when you need the bisector explicitly as a line object (e.g., for in-
tersection or drawing). If you are working within a triangle object, some methods may also provide access to
bisectors directly.

29.4. Barycenter

The function tkz.barycenter computes the barycenter (or center of mass) of any number of weighted points.
It is a general-purpose function that works independently of geometric objects.

Syntax:
The function takes a variable number of arguments. Each argument must be a table of the form:

{point, weight}

Example with three equally weighted points:

z.G = tkz.barycenter({z.A, 1}, {z.B, 1}, {z.C, 1})

This computes the centroid of triangle 𝐴𝐵𝐶. The same result can be obtained using the object attribute:

T.ABC = triangle(z.A, z.B, z.C)
z.G = T.ABC.centroid

General case:
The function can be applied to any number of points with arbitrary weights:

z.G = tkz.barycenter({z.A, 2}, {z.B, 3}, {z.C, 1}, {z.D, 4})

This computes:
𝐺 = 2𝐴+3𝐵+𝐶+4𝐷

10

Use cases:

– Use tkz.barycenter when dealing with arbitrary sets of weighted points.

– In triangle geometry, prefer T.ABC.centroid, which is automatically computed and stored.

Note:
The result is returned as a point object and can be used in any subsequent construction.

29.5. Angles and the constant tkz.tau

Most trigonometric and geometric computations in tkz-elements are expressed in radians. A full turn is
therefore represented by the constant

𝜏 = 2𝜋.

For convenience, the value of 𝜏 is available to the user as
tkz.tau = 2 * math.pi
This constant is particularly useful when dealing with normalized or periodic angles. For instance:

– tkz.tau / 4 corresponds to a right angle (90∘),

– tkz.tau / 2 corresponds to 180∘,
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– 3 * tkz.tau / 2 corresponds to 270∘,

– a % tkz.tau normalizes any angle a to the interval [0,𝜏).

Using 𝜏 avoids the explicit appearance of 2𝜋 in numerical code and improves readability in geometric computa-
tions.

29.6. Function tkz.get_angle(pa, pb, pc)

The function tkz.get_angle returns the oriented angle at a point, given three points A, B, C.
It computes the oriented angle 𝐵𝐴𝐶 at vertex 𝐴, corresponding to the rotation from vector ⃗⃗⃗⃗⃗⃗⃗𝐴𝐵 to vector ⃗⃗⃗⃗⃗⃗⃗𝐴𝐶,
in radians.

Syntax:

an = tkz.get_angle(pa, pb, pc)

Arguments:

– pa, pb, pc — three points (Lua complex numbers).

Return value:

– an oriented angle (Lua number) in radians, in the interval (−𝜋,𝜋].

Example:
The following code computes both angles 𝐶𝐴𝐵 and 𝐶𝐴𝐵 using point a as the vertex, and formats them for
display using tkzround:

𝑎

𝑏

𝑐

2.356

-2.356

\directlua{
init_elements()
z.a = point(0, 0)
z.b = point(-2, -2)
z.c = point(0, 3)
ang_cb = tkz.round(
tkz.get_angle(z.a, z.c, z.b), 3)

ang_bc = tkz.round(
tkz.get_angle(z.a, z.b, z.c), 3)

}
\begin{center}
\begin{tikzpicture}[scale = 1.2]

\tkzGetNodes
\tkzDrawLines[red](a,b a,c)
\tkzDrawPoints(a,b,c)
\tkzLabelPoints(a,b,c)
\tkzMarkAngle[->](c,a,b)
\tkzLabelAngle(c,a,b){%

\tkzUseLua{ang_cb}}
\tkzMarkAngle[->](b,a,c)
\tkzLabelAngle(b,a,c){%

\tkzUseLua{ang_bc}}
\end{tikzpicture}
\end{center}

29.7. Function tkz.inner_angle(pa, pb, pc)

The function \tkzFct{tkz}{tkz.inner_angle} returns the interior (non-oriented) angle at a point, given three
points pa, pb, pc.
It corresponds to the absolute value of the oriented angle 𝐵𝐴𝐶 in radians.

Syntax:
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an = tkz.inner_angle(pa, pb, pc)

Arguments:

– pa, pb, pc — three points.

Return value:

– a non-oriented angle in radians, in the interval [0,𝜋].

This function is especially useful for working with triangle angles:

𝛼 = tkz.inner_angle(𝐴,𝐵,𝐶), 𝛽 = tkz.inner_angle(𝐵,𝐶,𝐴), 𝛾 = tkz.inner_angle(𝐶,𝐴,𝐵).

29.8. Function tkz.angle_normalize

The function \tkzFct{tkz}{tkz.angle\_normalize} normalizes a real angle to the interval [0,2𝜋).

Syntax:
an2 = tkz.angle_normalize(an1)
Arguments:

– an1 — a real number (angle in radians).

Return value:

– an2 — the same angle, reduced modulo 2𝜋 into [0,2𝜋).

Application:
To compute the orientation of a line segment in the plane, we use the function arg(z) which returns the angle
(in radians) between the positive horizontal axis and the vector represented by the complex number z. This
value may be negative or greater than 2𝜋 depending on the direction of the vector.

To ensure consistency, especially when comparing angles or sorting them, the function
tkz.angle_normalize(an) maps any angle to the interval [0,2𝜋].

Example:
The following example computes and displays the slope (angle) of three vectors (ab), (ac), and (ad). It shows
both the raw angle and the normalized version.

\directlua{%
init_elements()

z.a = point(0, 0)
z.b = point(-3, -3)
z.c = point(0, 3)
z.d = point(2, -2)
local angle = point.arg(z.b - z.a)
tex.print('slope of (ab): '..tostring(angle)..'\\\\')
tex.print('slope normalized of (ab): '..tostring(tkz.angle_normalize(angle))..'\\\\')
local angle = point.arg (z.c-z.a)
tex.print('slope of (ac): '..tostring(angle)..'\\\\')
tex.print('slope normalized of (ac): '..tostring(tkz.angle_normalize(angle))..'\\\\')
local angle = point.arg (z.d-z.a)
tex.print('slope of (ad): '..tostring(angle)..'\\\\')
tex.print('slope normalized of (ad): '..tostring(tkz.angle_normalize(angle))..'\\\\')

}

slope of (ab): -2.3561944901923
slope normalized of (ab): 3.9269908169872
slope of (ac): 1.5707963267949
slope normalized of (ac): 1.5707963267949
slope of (ad): -0.78539816339745
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slope normalized of (ad): 5.4977871437821

\begin{tikzpicture}[scale = .75]
\tkzGetNodes
\tkzDrawLines[red](a,b a,c a,d)
\tkzDrawPoints(a,b,c,d)
\tkzLabelPoints(a,b,c,d)

\end{tikzpicture}

𝑎

𝑏

𝑐

𝑑

Note:
This technique is essential when working with angular comparisons, sorting directions (e.g., in convex hull
algorithms), or standardizing outputs for further geometric processing.

29.9. Function tkz.is_direct

The function tkz.is_direct tests whether the oriented angle at a point is direct (counter-clockwise).

Syntax:

ok = tkz.is_direct(pa, pb, pc)

Arguments:

– pa, pb, pc — three points.

Return value:

– true if the oriented angle 𝐵𝐴𝐶 (from ⃗⃗⃗⃗⃗⃗⃗𝐴𝐵 to ⃗⃗⃗⃗⃗⃗⃗𝐴𝐶) is > 0 (direct, counter-clockwise),

– false otherwise.

29.10. Function tkz.get_angle_normalize

The function tkz.get_angle_normalize combines tkz.get_angle and tkz.angle_normalize.
It returns the oriented angle at a point, normalized to [0,2𝜋).

Syntax:

an = tkz.get_angle_normalize(pa, pb, pc)

Arguments:

– pa, pb, pc — three points.

Return value:

– a real number in [0,2𝜋): the normalized oriented angle at pa.
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29.11. Function tkz.angle_between_vectors

The function tkz.angle_between_vectors returns the oriented angle between two vectors ⃗⃗⃗⃗⃗⃗⃗𝐴𝐵 and ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗𝐶𝐷.

Syntax:

an = tkz.angle_between_vectors(a, b, c, d)

Arguments:

– a, b — endpoints of the first vector (from a to b),

– c, d — endpoints of the second vector (from c to d).

Return value:

– an oriented angle in radians, in the interval (−𝜋,𝜋], corresponding to the rotation from ⃗⃗⃗⃗⃗⃗⃗𝐴𝐵 to ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗𝐶𝐷.

Internally, the angle is computed using the standard atan2 formula based on the dot product and the determinant
of the two vectors.

29.12. Function tkz.dot_product(z1, z2, z3)

The function computes the dot (scalar) product of the vectors ⃗⃗⃗⃗⃗⃗⃗⃗⃗𝑧1𝑧3 and ⃗⃗⃗⃗⃗⃗⃗⃗⃗𝑧1𝑧2:

(𝑧3−𝑧1) ⋅ (𝑧2−𝑧1)

Note:
This is equivalent to (z2 - z1)..(z3 - z1) See also [22.2.7]
It is used to test orthogonality or to measure projection components. A result of zero indicates that the vectors
are perpendicular.

Syntax:

tkz.dot_product(origin, point1, point2)

This returns the scalar product ⃗⃗⃗⃗⃗⃗⃗⃗⃗𝑧1𝑧3 ⋅ ⃗⃗⃗⃗⃗⃗⃗⃗⃗𝑧1𝑧2.
Example.
In the example below, the triangle 𝐴𝐵𝐶 is constructed along with its triangle of antiparallels. The dot product
of ⃗⃗⃗⃗⃗⃗⃗𝐴𝐶 and ⃗⃗⃗⃗⃗⃗⃗𝐴𝐵 is computed:
\directlua{%
init_elements()
z.A = point(0, 0)
z.B = point(5, 0)
z.C = point(0, 3)
T.ABC = triangle(z.A, z.B, z.C)
z.A_1,
z.B_1,
z.C_1 = T.ABC:anti():get()
x = tkz.dot_product(z.A, z.B, z.C)}
\begin{tikzpicture}

\tkzGetNodes
\tkzDrawPolygon(A,B,C)
\tkzDrawPoints(A,B,C,A_1,B_1,C_1)
\tkzLabelPoints(A,B,C,A_1,B_1,C_1)
\tkzDrawPolygon[blue](A_1,B_1,C_1)
\tkzText[right](0,-1){dot product =

\tkzUseLua{x}}
\end{tikzpicture}

𝐴 𝐵

𝐶 𝐴1𝐵1

𝐶1

dot product =0

Interpretation:
In this example, the dot product of vectors ⃗⃗⃗⃗⃗⃗⃗𝐴𝐶 and ⃗⃗⃗⃗⃗⃗⃗𝐴𝐵 is 0. Since the result is zero, the vectors are orthogonal.
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29.13. Alignment and orthogonality tests

The functions tkz.is_linear and tkz.is_ortho are used to test the geometric relationships between three
points, namely alignment and orthogonality.

tkz.is_linear(z1, z2, z3) This function returns true if the three points are aligned — that is, if the vectors

𝑜𝑣𝑒𝑟𝑟𝑖𝑔ℎ𝑡𝑎𝑟𝑟𝑜𝑤𝑧1𝑧2 and
𝑜𝑣𝑒𝑟𝑟𝑖𝑔ℎ𝑡𝑎𝑟𝑟𝑜𝑤𝑧1𝑧3 are collinear. Geometrically, this means the three points lie on the same straight line:

(𝑧2−𝑧1) ∥ (𝑧3−𝑧1)

if tkz.is_linear(z.A, z.B, z.C) then
-- the points are collinear

end

This code replaces:

L.AB = line(z.A, z.B)
L.BC = line(z.B, z.C)
if L.AB:is_parallel(L.BC) then
-- the points are collinear

end

tkz.is_ortho(z1, z2, z3) This function returns true if the vectors ⃗⃗⃗⃗⃗⃗⃗⃗⃗𝑧1𝑧2 and ⃗⃗⃗⃗⃗⃗⃗⃗⃗𝑧1𝑧3 are orthogonal — that is,
the scalar product between them is zero:

(𝑧2−𝑧1) ⋅ (𝑧3−𝑧1) = 0

if tkz.is_ortho(z.A, z.B, z.C) then
-- the angle between the segments is 90°

end

This code replaces:

L.AB = line(z.A, z.B)
L.BC = line(z.B, z.C)
if L.AB:is_orthogonal(L.BC) then
-- the angle between the segments is 90°

end

Use case:
These functions are particularly useful in decision structures or automated constructions (e.g., checking if a
triangle is right-angled or degenerate). They return boolean values and do not create any geometric object.

29.14. Bisector and altitude

The functions bisector, bisector_ext, and altitude return line objects corresponding to classical triangle
constructions. They are useful when you don’t need to create a full triangle object and simply want the
desired line or foot point directly.

Internal bisector:
tkz.bisector(z1, z2, z3) returns the internal angle bisector at point z1, computed between vectors ⃗⃗⃗⃗⃗⃗⃗⃗⃗𝑧1𝑧2
and ⃗⃗⃗⃗⃗⃗⃗⃗⃗𝑧1𝑧3. The result is a line object; its foot (point pb) lies on the opposite side.

External bisector:
tkz.bisector_ext(z1, z2, z3) returns the external angle bisector at z1. It is orthogonal to the internal
bisector.

Altitude:
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tkz.altitude(vertex, foot1, foot2) returns the perpendicular from vertex to the line passing through
foot1 and foot2. The result is also a line object; the foot is stored in its pb attribute.

\directlua{
z.a = point(0, 0)
z.b = point(5, -2)
z.c = point(2, 3)
z.i = tkz.bisector(z.a, z.c, z.b).pb
z.h = tkz.altitude(z.b, z.a, z.c).pb
angic = tkz.round(tkz.get_angle(z.a, z.i, z.c), 2)
angci = tkz.round(tkz.get_angle(z.a, z.b, z.i), 2)
z.e = tkz.bisector_ext(z.a, z.b, z.c).pb

\begin{tikzpicture}
\tkzGetNodes
\tkzDrawPolygon(a,b,c)
\tkzDrawSegments(a,i b,h a,e)
\tkzDrawPoints(a,b,c,i,h)
\tkzLabelPoints(a,b)
\tkzLabelPoints[above](c,i,h)
\tkzMarkAngle[->](i,a,c)
\tkzLabelAngle[font=\tiny,pos=.75](i,a,c){\tkzUseLua{angci}}
\tkzMarkAngle[<-](b,a,i)
\tkzLabelAngle[font=\tiny,pos=.75](b,a,i){\tkzUseLua{angic}}

\end{tikzpicture}

𝑎

𝑏

𝑐

𝑖ℎ

0.68

0.68

Note:
These functions return full line objects, allowing access to their points and directions. This makes them ideal
for flexible constructions where you do not need a structured triangle object.

29.15. Function tkz.is_linear

The function tkz.is_linear(z1, z2, z3) checks whether three points are collinear. It returns true if the
vectors ⃗⃗⃗⃗⃗⃗⃗⃗⃗𝑧1𝑧2 and ⃗⃗⃗⃗⃗⃗⃗⃗⃗𝑧1𝑧3 are parallel — i.e., if the points lie on the same line:

(𝑧2−𝑧1) ∥ (𝑧3−𝑧1)

This is equivalent to testing whether the oriented area of triangle (𝑧1,𝑧2,𝑧3) is zero.

Syntax:

tkz.is_linear(z1, z2, z3) → boolean
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Example:
The following code tests whether the points 𝐴, 𝐵 and 𝐶 are aligned. If so, the new point 𝐷 is set to (0,0);
otherwise it is set to (−1,−1).

Note:
The function does not create any geometric object. It is intended for use in conditionals or assertions to verify
configurations before constructing further elements.

29.16. Function tkz.round(num, idp)

This function performs rounding of a real number to a specified number of decimal places and returns the result
as a numerical value.

Syntax:

local r = tkz.round(3.14159, 2) → 3.14

Arguments:

– num – A real number to round.

– idp – Optional number of decimal digits (default: 0).

Returns:
A rounded number, of type number.

Example.

tkz.round(3.14159, 0) --> 3
tkz.round(3.14159, 2) --> 3.14
tkz.round(-2.71828, 3) --> -2.718

Related functions:
format_number(x, decimals) – Converts rounded number to string

29.17. Function tkz.angle_between_vectors(a, b, c, d)

Purpose:
The function computes the angle between the oriented vector ⃗𝐴𝐵 (from a to b) and the oriented vector ⃗𝐶𝐷
(from c to d).
This function is especially useful for computing turning angles or verifying geometric configurations such as
orthogonality (angle = ±π/2), alignment (angle = 0 or π), and orientation.
Arguments: a, b, c, d (points as complex numbers)
Returns: Angle in radians (real number)
Example:
In this example, several methods are used to determine the angles for each vertex.

𝐴 𝐵

𝐶

75.96 45

59.04
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\directlua{
z.A = point(0, 0)
z.B = point(5, 0)
z.C = point(1, 4)
T.ABC = triangle(z.A, z.B, z.C)
}
\begin{center}
\begin{tikzpicture}
\tkzGetNodes
%\tkzDrawCircles()
\tkzDrawPolygon(A,B,C)
\tkzDrawPoints(A,B,C)
\tkzLabelPoints(A,B)
\tkzLabelPoints[above](C)
\tkzLabelAngle(B,A,C){$\tkzPrintNumber[2]{%
\tkzUseLua{math.deg(T.ABC.alpha)}}$}
\tkzLabelAngle(C,B,A){$\tkzPrintNumber[2]{%
\tkzUseLua{math.deg(tkz.get_angle(z.B,z.C,z.A))}}$}
\tkzLabelAngle(A,C,B){$\tkzPrintNumber[2]{%

\tkzUseLua{math.deg(tkz.angle_between_vectors(z.C,z.A,z.C,z.B))}}$}
\end{tikzpicture}

\end{center}

29.18. Function tkz.parabola(pta, ptb, ptc)

Given three non-collinear points, there exists a unique parabola passing through them. The function parabola
computes the coefficients 𝐴,𝐵,𝐶 of the quadratic function 𝑦 =𝐴𝑥2+𝐵𝑥+𝐶 that interpolates these points.

𝑥

𝑦 \directlua{
init_elements()
z.a = point(1, 0)
z.b = point(3, 2)
z.c = point(0, 2)
local A,
B,
C = tkz.parabola(z.a, z.b, z.c)

function def_curve(t0, t1, n)
local p = path()
local dt = (t1-t0)/n
for t = t0, t1, dt do

local y = A * t^2 + B * t + C
local pt = point(t, y)
p:add_point(pt)

end
return p

end

PA.curve = def_curve(-1,3,100)
}

\begin{tikzpicture}
\tkzGetNodes
\tkzInit[xmin = -2,xmax=4,ymin =-1,ymax=6]
\tkzDrawX\tkzDrawY
\tkzDrawPoints[red,size=4pt](a,b,c)
\tkzDrawCoordinates[smooth,purple](PA.curve)

\end{tikzpicture}

29.19. Function tkz.nodes_from_paths

Syntax: tkz.nodes_from_paths(PAcenters, PAthrough [, wbase, tbase, indice])
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Purpose: This function transfers the points contained in two Lua paths — one representing the circle centers
and the other the corresponding through points — into the global Lua table . Each pair of points is assigned
a name based on two prefixes (for instance “w” and “t”) followed by an index number.
Arguments:

– PAcenters – a path containing the centers of the circles.

– PAthrough – a path containing the corresponding through points.

– wbase (optional) – base name for the centers (default: "w").

– tbase (optional) – base name for the through points (default: "t").

– indice (optional) – starting index (default: 1).

Returned values: None. The function creates Lua entries in the global table such as:
z["w1"]=z.w1, z["t1"]=z.t1, z["w2"], z["t2"], ...
Example: The task here is to determine the two circles passing through point 𝑃 and tangent to the two lines
(𝐴𝐵) and (𝐶𝐷).

𝐴

𝐵

𝐶

𝐷

𝑃

\directlua{
z.A = point(0, 0)
z.B = point(5, 2)
z.C = point(0, 1)
z.D = point(4, 5)
z.P = point(2, 1.5)
L.AB = line(z.A, z.B)
L.CD = line(z.C, z.D)
pc, pt = L.AB:LLP(L.CD, z.P)
tkz.nodes_from_paths(pc, pt)}

\begin{tikzpicture}
\tkzGetNodes
\tkzDrawLines(A,B C,D)
\tkzDrawCircles[thick,red](w1,t1 w2,t2)
\tkzDrawPoints(A,B,C,D,P)
\tkzLabelPoints(A,B,C,D,P)

\end{tikzpicture}

Remarks:

– Both paths must have the same number of points; otherwise, the error originates from the previous
computation.

– The optional indice argument is useful when several sets of contact circles are created successively,
avoiding overwriting previously defined nodes.

– This function does not perform any drawing. It only defines the Lua variables for later use in TikZ
constructions.

29.20. Function tkz.fsolve(f, a, b, n [, opts])

Purpose: Searches numerically for real roots of a function 𝑓(𝑥) over the interval [𝑎,𝑏].
The interval is divided into 𝑛 subintervals, and on each one a few Newton-type iterations are performed (with
numerical derivative).

Syntax: roots = tkz.fsolve(f, a, b [, n, opts])

Arguments:

– f — function of one variable (function(x) → number);

– a, b — interval bounds (number);

– n — number of subintervals (default: 25);

– opts — optional table of parameters:
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– tol — tolerance on f(r) (default: 1e-8);
– step_tol — tolerance on the Newton step (default: 1e-10);
– h — step size for the numerical derivative (default: 1e-6);
– max_iter — maximum iterations per seed (default: 8);
– merge_eps — distance threshold to merge nearby roots (default: 1e-5).

Returns: A Lua table (array) containing all distinct roots found in [𝑎,𝑏], or nil if no root exists.

Notes:

– Each subinterval [𝑥𝑖,𝑥𝑖+1] is explored independently.

– The derivative is approximated by the finite difference (𝑓(𝑥+ℎ)−𝑓(𝑥))/ℎ.

– Nearby roots (closer than merge_eps) are merged automatically.

– This method is simple and robust for basic searches but not intended as a high-precision or multi-
dimensional solver.

29.21. tkz.derivative(f, x0 [, accuracy])

Purpose: Computes the numerical derivative 𝑓′(𝑥0) using a symmetric finite difference.

Syntax: df = tkz.derivative(f, x0 [, accuracy])

Arguments:

– f — function of one variable (function(x) → number);

– x0 — point where the derivative is evaluated;

– accuracy — optional increment controlling the precision of the finite difference (default: 1e-6).

Returns: The approximate derivative value 𝑓′(𝑥0), or nil if inputs are invalid.

Notes:

– The derivative is approximated by the central formula:

𝑓′(𝑥0) ≈
𝑓(𝑥0+𝑎𝑐𝑐𝑢𝑟𝑎𝑐𝑦)−𝑓(𝑥0−𝑎𝑐𝑐𝑢𝑟𝑎𝑐𝑦)

2𝑎𝑐𝑐𝑢𝑟𝑎𝑐𝑦
.

– The parameter accuracy controls the trade-off between precision and numerical stability.

– Too small a value of accuracy may amplify floating-point rounding errors.

29.22. Function tkz.range

The tkz.range function creates a Lua table containing a sequence of numbers between two bounds, using a
specified step (similar to the Python range function).
Syntax:

tkz.range(a, b [, step])

– a, b — the lower and upper bounds.

– step — optional increment (default: 1). Can be negative for decreasing sequences.

Returns: a Lua table tbl containing the values from a to b (inclusive).

Example:
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\directlua{
local T = tkz.range(5, 1, -1)
for i, v in ipairs(T) do

tex.print(string.format("Value i: v))
end
}

Output:

Value 1: 5
Value 2: 4
Value 3: 3
Value 4: 2
Value 5: 1
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30. Module utils

The utils module provides a collection of general-purpose utility functions used throughout the tkz-elements
library. These functions are designed to support common tasks such as numerical rounding, type checking,
floating-point comparisons, and table operations.

Although these functions are not directly related to geometric constructions, they play a vital role in ensuring the
consistency, robustness, and readability of the core algorithms. Most of them are small, efficient, and reusable
in other contexts.

This module is loaded automatically by tkz-elements, but its functions can also be used independently if
needed.

30.1. Table of module functions utils

Table 43: Functions of the module utils.
Function Reference

utils.parse_point(str) [30.2]
utils.format_number(r, n) [30.3]
utils.format_coord(x, decimals) [30.4]
utils.format_point(z, decimals) [30.6]
utils.checknumber(x, decimals) [30.5]
utils.almost_equal(a, b, eps) [30.7]
utils.wlog(...) [30.8]

30.2. Function parse_point(str)

Parses a string of the form "(x,y)" and returns the corresponding numeric coordinates. This function supports
optional spaces and scientific notation.
Syntax:

local x, y = utils.parse_point("(1.5, -2.3)")

Purpose:
The function takes a string argument and parses it to extract the x and y components as numbers. The input
string must follow the format "(x, y)" where x and y can be floating-point values written in decimal or scientific
notation.
Arguments: str – A string representing a point, e.g., "(3.5, -2.0)".
Returns:
x, y – numeric coordinates as Lua numbers. Two numerical values: the real and imaginary parts of the point.
Features:

– Accepts optional spaces around numbers and commas.

– Accepts scientific notation (1e-2, 3.4E+1).

– Raises an error for invalid formats.

Example usage:

local x, y = utils.parse_point("(3.5, -2)")
-- x = 3.5, y = -2.0

Related functions:

– format_point(z, decimals)

– format_number(x, decimals)
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30.3. Function format_number(x, decimals)

This function formats a numeric value (or a numeric string) into a string representation with a fixed number of
decimal places.
Syntax:

local str = utils.format_number(math.pi, 3)

Purpose:
The function converts a number (or a string that can be converted to a number) into a string with the specified
number of decimal digits. It is especially useful when generating clean numerical output for display or export
to TikZ coordinates.
Arguments:

– x – A number or a string convertible to a number.

– decimals – Optional. The number of decimal places (default is 5).

Returns: A string representing the value of x with the specified number of decimals.
Features:

– Automatically converts strings to numbers if possible.

– Ensures consistent formatting for TikZ coordinates or LaTeX output.

– Raises an error if the input is not valid.

Example usage:

local a = utils.format_number(math.pi, 3)
% a = "3.142"

local b = utils.format_number("2.718281828", 2)
% b = "2.72"

Error handling.
An error is raised if x is not a valid number or numeric string.
Related functions:

– to_decimal_string(x, decimals)

– format_point(z, decimals)

30.4. Function format_coord(x, decimals)

This function formats a numerical value into a string with a fixed number of decimal places. It is a lighter
version of format_number, intended for internal use when inputs are guaranteed to be numeric.
Syntax:

local s = utils.format_coord(3.14159, 2) → "3.14"

Arguments:

– x – A number (not validated).

– decimals – Optional number of decimal places (default: 5).

Returns:
A string with fixed decimal formatting.
Notes:
This function is used internally by add_pair_to_path and other path-building methods.
Unlike format_number, it does not perform input validation and should only be used with known numeric
inputs.
Related functions:

– format_number(x, decimals) – safer alternative with validation
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30.5. Function checknumber(x, decimals)

Validates and converts a number or numeric string into a fixed-format decimal string.

Syntax:

local s = utils.checknumber("2.71828", 4) → "2.7183"

Arguments:

– x – A number or numeric string.

– decimals – Optional number of decimal digits (default: 5).

Returns:
A formatted string representing the value rounded to the specified number of decimal places.

Remarks:
Used internally to validate input before formatting. Returns an error if the input is not convertible.

Related functions:

– format_number

30.6. Function format_point(z, decimals)

Converts a complex point into a string representation suitable for coordinate output.
Syntax:

local s = utils.format_point(z, 4) → "(1.0000,2.0000)"

Arguments:

– z – A table with fields re and im.

– decimals – Optional precision (default: 5).

Returns:
A string representing the point as "(x,y)".

Error handling.
Raises an error if z does not have numeric re and im components.

Related functions:

– format_coord

30.7. Function almost_equal(a, b, epsilon)

Returns true if two numbers are approximately equal within a given tolerance.

Syntax:

if utils.almost_equal(x, y) then ... end

Arguments:

– a, b – Two numbers to compare.

– epsilon – Optional tolerance (default: tkz_epsilon).

Returns:
A boolean: true if the values differ by less than the tolerance.
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30.8. Function wlog(...)

Logs a formatted message to the .log file only, with a [tkz-elements] prefix.

Syntax:

utils.wlog("Internal value: %s", tostring(value))

Returns:
No return value. Logging only.
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31. Maths tools

The maths tools module provides general-purpose mathematical functions for solving algebraic equations and
linear systems. These tools serve as computational backbones for various geometric or algebraic operations in
the tkz-elements library.
The key features include:

– Solving polynomial equations of degree 1, 2, or 3.

– Solving linear systems via augmented matrix transformation.

These functions handle both symbolic and numerical workflows and are suitable for educational, demonstrative,
or computational geometry contexts.

Functions overview

Table 44: Math functions
Name Reference

tkz.solve(...)

tkz.solve_linear_system

31.1. solve(...)

This general-purpose function solves polynomial equations of degree 1, 2, or 3 with real or complex coefficients.
It delegates to specific solvers depending on the number of parameters.

Syntax:

x = solve(a, b) -- solves ax + b = 0
x1, x2 = solve(a, b, c) -- solves ax^2 + bx + c = 0
x1, x2, x3 = solve(a, b, c, d) -- solves ax^3 + bx^2 + cx + d = 0

Arguments:

– 2 parameters: 𝑎, 𝑏 — coefficients of a linear equation 𝑎𝑥+𝑏 = 0.

– 3 parameters: 𝑎, 𝑏, 𝑐 — coefficients of a quadratic equation.

– 4 parameters: 𝑎, 𝑏, 𝑐, 𝑑 — coefficients of a cubic equation.

Return:
Depending on the degree of the equation:

– solve(a,b) returns one value (or an error if 𝑎 = 0).

– solve(a,b,c) returns two roots (real or false if complex and unsupported).

– solve(a,b,c,d) returns up to three real roots (complex roots not currently supported).

Examples:

x = solve(2, -4) -- x = 2
x1, x2 = solve(1, -3, 2) -- x1 = 2, x2 = 1
x1, x2, x3 = solve(1, -6, 11, -6) -- x1 = 1, x2 = 2, x3 = 3

Notes:

– For quadratics with complex solutions, the function currently returns false, false.

– Cubic solving is limited to real roots using Cardano’s method and assumes 𝑎 ≠ 0.

– Internally uses the functions tkz.solve_quadratic and tkz.solve_cubic.
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31.2. Function solve_linear_system(M, N)

Solves the linear system 𝑀𝑋 =𝑁 using Gauss–Jordan elimination on the augmented matrix [𝑀‖𝑁].

– M is the coefficient matrix (𝑚×𝑛).

– N is the right-hand side column vector (𝑚×1).

– Returns the unique solution vector 𝑋 (𝑛×1), if it exists.

Return value:

– Returns a new matrix representing the solution.

– Returns nil and an error message if:
– the system is inconsistent (no solution),
– the system is underdetermined (infinite solutions),
– dimensions are incompatible.

Example usage:

M = matrix({{2,1}, {4,-6}})
N = matrix({{5}, {-2}})
X = solve_linear_system(M, N)
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32. LuaLaTeX for Beginners: An Introduction to Lua Scripting

32.1. Introduction to Lua with LaTeX

LuaLATEX is a variant of LaTeX that integrates Lua as a scripting language. This enables:

– Perform advanced calculations.

– Manipulate text and data.

– Generate dynamic content in a document.

32.2. Using Lua in a LaTeX document

In tkz-elements, I only use two ways of integrating code into Lua, which are as follows:

– Lua code block with \directlua. Note14

Lua code can be executed directly in a document using \directlua:
\directlua{tex.print(math.exp(1))} –> 2.718281828459

– Loading an external Lua file:
You can write a separate Lua script and load it with: dofile, loadfile or require. Each of these
functions has its own advantages, depending on the circumstances; initially, we’ll be focusing on the first
two.
dofile: Immediately executes a Lua file. Equivalent to loadfile(filename)()
loadfile: Loads a Lua file into memory (without executing it immediately); returns a function to execute.
require: Loads a Lua module once (via package.loaded) and executes it; uses package.path to search for
the file.
Examples are provided in this documentation, which you can see:
[6] \directlua{dofile("lua/sangaku.lua")}

+How to comment in a file under LuaLATEX. There are several cases to consider: in the LATEX part outside a
directlua directive, the % symbol is always used. Within a \directlua directive, % is still used. In an external
file fic.lua, the symbol for a single-line comment in Lua is -- (two hyphens).
With luacode environment, you need to use two hyphens.
The next subsection describes some of the differences between TEX and LuaTeX for special characters and
catcodes.

32.3. Special Characters and Catcodes in LuaTEX

+ Warning: Working with LuaTEX exposes deep differences between how Lua and TEX handle characters—especially
special characters—and how category codes (catcodes) are assigned and interpreted.

32.3.1. What Are Catcodes in LATEX?

In LATEX, every character is associated with a category code, or catcode, which determines how TEX interprets
it during input processing.
Character Catcode Meaning
\ 0 Escape character (starts a control sequence)
{ 1 Begin group
} 2 End group
# 6 Macro parameter
^ 7 Superscript (in math mode)
% 14 Comment character

These catcodes can change dynamically within a macro or document. This flexibility is powerful, but also risky
when interfacing with Lua.

14 You can use the luacode environment, after loading the package of the same name. The tkzelements environment can also be used.
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32.3.2. Lua Does Not Understand Catcodes

Lua interprets strings as sequences of bytes or UTF-8 code points. It has no concept of catcodes. When
Lua sends content to TEX using \directlua, the interpretation is performed by TEX according to the current
catcode settings.
This discrepancy leads to common issues:

– Special characters such as #, %, or ^ are not escaped, which can break the LATEX parser.

– Control sequences may be misinterpreted if \ is improperly used or redefined.

– Group delimiters ({ and }) inserted from Lua may be incorrectly parsed, especially when injected into
macros using tex.sprint.

32.3.3. Typical Problem Examples

– Hash (#): Printing \mycmd{#1} from Lua may raise an error if # does not have catcode 6 or is not
escaped correctly.

– Newlines (\n): Lua uses \n for line breaks, which are not valid in TeX input unless passed through
\scantokens.

– Percent (%): The % (percent) symbol is special to both (La)TeX and Lua, but in very different ways. In
(La)TeX, it’s the default comment character. In Lua, it’s one of the ”magic” characters in pattern matching
operations. (Lua’s other ”magic” characters are ^$()[]*+-?].)

32.4. Interaction between Lua and LaTeX

LuaLATEX allows you to interact with LaTeX, in particular via:

– tex.print(): displays text in LaTeX.

– tex.sprint(): inserts content without extra space.

|\directlua{tex.sprint("\\textbf{Bold text generated by Lua}")}|

Bold text generated by Lua

32.5. The variables

In Lua, a variable is a named label that stores a value. Its type is determined dynamically by the value
assigned to it, and its scope (global or local) influences where it can be used in your program.

Let’s analyze what we’ve just written. Four points are important: ”named label”, ”type of value”, ”dynamically”
and ”scope”.

32.5.1. Named label

The name you assign to a variable must follow certain rules:

– They can contain letters (a-z, A-Z), digit (0-9) and the underscore symbol (_).

– They cannot start with a digit.

– They are case-sensitive.

– Some Lua keywords (such as if, then, function, local, etc.) are reserved and cannot be used as variable
names.
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32.5.2. Data types

What types of values can be assigned to a variable? Here’s a list of the simplest:

– nil: undefined value.

– boolean: true or false.

– number: double-precision floating-point numbers (reals).

– string: strings.

– table: associative data structures(key-value) and arrays.

– function: anonymous or named functions.

32.5.3. Dynamically

The type is defined by the assigned value. So when x = 5 then the type of x is number, but if x = true then
its type changes to boolean.
+This warning was issued earlier concerning classes and variables reserved by the tkz-elements. For example,
you cannot use: circle with 𝑐𝑖𝑟𝑐𝑙𝑒 = ... which would result in losing the use of the class circle. Similarly,
𝐶 = 1 would result in the loss of the contents of the table C.

32.5.4. Scope and block

1. Block
In Lua, a block is a sequence of statements that are treated as a single unit. Blocks in Lua are delimited
by specific keywords. They are crucial for structuring code, defining the scope of local variables, and
controlling the flow of execution.
Here are the primary ways blocks are defined in Lua:

– do ... end. This explicitly creates a block. Any local variables declared within a do...end block are
only accessible within that block.

– if ... then ... else ... end or if...then...elseif...then...end. The statements between
then and end (or else and end, or the then following elseif) form a block that is executed conditionally.

– for...do...end or while...do...end The body of the loop, between do and end, is a block that
is executed repeatedly.

– function...end. The body of a function, between function and end, is a block that contains the
function’s code.

2. Scope
Lua has two main types of scope: global or local. The scope of a variable determines where in your code
that variable is accessible. By default, a variable that is assigned a value without being explicitly declared
(with local) is global. It is recommended and preferable to declare only local variables in a function or
block. This is done by adding local in front of the variable name.
A variable declared as local in a block is not accessible outside it.
Example:

\directlua{
do
local x = 10
tex.print(x) % Accessible here

end
tex.print(x) % Error! x is out of scope here}

32.6. The values

Let’s see what you need to know about the main values.
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32.6.1. nil

– nil is the most basic and its own data type. nil is used to indicate that a variable has not yet been
assigned a value, or that a value has been explicitly suppressed.

\directlua{
tex.print(tostring(no_assigned))}
and
tex.print(type(no_assigned)) gives

nil nil

– Table and nil.

Assigning nil to a key removes that entry from the table. It’s possible to delete a table using nil. This
can free up memory if there are no other references to this table.

32.6.2. Booleans

– In Lua, there are only two boolean values: true and false.

– Booleans belong to the boolean data type.

– They are manipulated using logical operators (and, or, not) to form more complex boolean expressions.

– Unlike many other languages, in Lua, only the values false and nil are considered false in a boolean context
(e.g., in an if condition). If you want to distinguish between nil and false you need to be more explicit

if v == false then
...
elseif v == nil then
...
else
...
end

32.6.3. Number

– Single Numeric Type. Lua has only one numeric type for representing real (double-precision floating-
point) numbers. This means that all numbers, whether they look like integers or have decimal points, are
treated the same.

– Lua uses a standard 64-bit floating-point representation.

– Even though there’s only one numeric type, Lua handles integer values efficiently.

– Arithmetic Operators.Lua supports the standard arithmetic operators. It is worth noting% (modulo) The
remainder of the division and // (floor division) - Divides and rounds the result down to the nearest
integer. You can use functions defined in the math library.

– A number can be transformed into a string with the tostring function. Example: a = 10 b = ”1” c =
tostring(a) .. b. Finaly, tex.print(c) gives 101.
Remark: in some cases, operations like addition or concatenation transform the type of one of the
operands to obtain a result, but there are many special cases.
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32.6.4. Strings

(a) Construction
You can define string literals in Lua using single quotes (’...’), double quotes (”...”), or double square
brackets ([[...]]), but there are differences between these methods. There are no major problems if the
strings don’t contain any special characters.
A first small problem arises if we want to include a single quote or a double quote into the string. The
simplest method is to define the string with the double square brackets. You can include a single quote
inside a string defined with double quote or vice versa.

a string with ” \directlua{tex.print('a string with " ')}

And if you like a bit of a challenge, it’s still possible to include a double quote inside a string defined with
double quotes. This time, to use a common method with TEX, we try to write ,̈ but this leads to an error.
Simply inactivate ẅith \” to obtain the correct result.

a string with ” \directlua{tex.print("a string with \string\" ")}

(b) Concatenation: ... An interesting example is the ability to create multiple variables:

local t= {}
local i = 5
t["x_" .. tostring(i)] = 11
tex.print(t.x_5)

(c) Lua provides a powerful string library (string) with many useful functions for manipulating strings. Here
are some common ones:

– string.char(n),
– string.len(s),
– string.sub(s, i [, j]),
– string.find(s, pattern [, init [, plain]]),
– string.gsub(s, pattern, repl [, n]),
– string.format(formatstring, ...), etc.

(d) Special or magic characters in the library String

Character Meaning
. Matches any character
% Escape character (for magic characters)
+ One or more repetitions
- Zero or more repetitions (minimal)
* Zero or more repetitions (greedy)
? Zero or one occurrence
[ ] Character class
^ Beginning of string
$ End of string

(e) Character Classes (after %)
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Code Meaning
a Letters (A-Z, a-z)
c Control characters
d Digits (0-9)
g Printable characters (except space)
l Lowercase letters
p Punctuation characters
s Space characters
u Uppercase letters
w Alphanumeric characters
x Hexadecimal digits (0-9, A-F, a-f)
z Null character (ASCII 0)

(f) Notes
– To match a literal magic character (like . or *), prefix it with %.
– Uppercase codes (%A, %D, etc.) match anything except the corresponding class.

(g) String.format in LuaLaTeX - Memo Sheet I’ve chosen to place the code Lua as an argument to the
directlua directive, which means you’ll have to keep an eye out for any special symbols (#, %, _ etc.)
you may be tempted to use.

Lua format Description
%d Decimal integer (7 or 7.0)
%i Placeholder for an integer or hexadecimal)
%f Floating-point number (fixed precision)
%g Floating-point number (automatic precision)
%s Placeholder for a string
%e Scientific notation (exponent)
%% Percent sign (escaping)
%-5d Left-align the integer with a field width of 5
%10.2f Right-align a floating-point number with width 10 and 2 decimal places
%.2f Floating-point number with 2 decimal places
%g Floating-point number with general format

* Basic Formatting
– string.format(%d, 5) outputs: 5
– string.format(%f, 2.5) outputs: 2.500000
– string.format(%g, 1234567.89) outputs: 1.23457e+06
– string.format(%s, "z.A") outputs: z.A

* Mathematical Expressions in LaTeX You can easily format mathematical expressions like powers and
equations:

– string.format($ %d ^3 = %d $, x, x^3) will output something like $8^3 = 512$

* Special Characters
– string.format(%%) outputs: %

(h) If s = ”example” then tex.print(s:len()) gives 7.

32.6.5. The Tables

– Definition
In Lua, the table type implements associative arrays and are the only data structure available. This means
that an association is created between two entities. The first is named key and the second value. A key
is associated with a unique value. A key can be an integer, a real (rare but possible), a string, a boolean,
a table, a function, but not nil.
A very frequent special case concerns tables whose keys are consecutive integers from 1. These are simply
referred to as arrays, in which case the keys are indices.
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– Table creation.
The simplest way to create a table is with the constructor expression {}, but the following example uses
sugar syntax

t = {one = 1, two = 4, three = 9, four = 16, five = 25}
Pairs (key,value) are separated by commas or semicolons. The key is to the left of the = sign and
the value to the right. t.one = 1; t.two = 4; etc.

In fact, this corresponds to

t = {["one"] = 1, ["two"] = 4, ["three"] = 9, ["four"] = 16, ["five"] = 25}

which is the most general definition of a table.
t.["one"] = 1; t.["two"] = 4; etc.

The use of sugar syntax is pleasant for the user, but it hides important points. First, the dot notation for
string keys is valid only if the string keys follow the rules for Lua identifiers (alphanumeric and underscore,
not starting with a digit).

– Table Manipulation.
There are in built functions for table manipulation and they are listed in the following table.

Table 45: Built-in Table Manipulation Functions in Lua
Function Description
table.insert(t, [pos,] value) Inserts a value into table t at position pos (default: end).
table.remove(t, [pos]) Removes the element at position pos from table t.
table.sort(t [, comp]) Sorts the elements of table t in-place. Optional comparator.
table.concat(t [, sep [, i [, j]]]) Concatenates elements of t from i to j using separator sep.
table.unpack(t [, i [, j]]) Returns the elements of t from index i to j.
table.pack(...) Returns a new table with all arguments stored as elements.

– Accessing elements: You can access table elements using square brackets [] with the corresponding key. If
the key is a valid string identifier, you can also use dot notation (.).

– Deleting elements: To remove an element from a table, simply assign the value nil to its key.

32.6.6. Functions

In Lua, functions possess first-class status, which means they can be assigned to variables, provided as arguments
to other functions, and used as return values from functions.

(a) Basic Syntax

125.0 \directlua{
function cubic(x)

return x^3
end
tex.print(cubic(5))}

(b) Parameters and Return Values

Functions can take any number of parameters and return multiple values. Let’s look at an example that
illustrates this case and shows some of the difficulties associated with Lua’s special characters.
This involves dividing with whole numbers. The simplest solution is to create this function in an external
file: “lua/divide.lua”.
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function divide_and_remainder(dividend, divisor)
if divisor == 0 then
tex.error("Error: Cannot divide by zero")
return nil

else
local quotient = math.floor(dividend / divisor)
local remainder = dividend % divisor
return quotient, remainder

end
end

\directlua{
dofile("lua/divide.lua")
local pc = string.char(37)
local num1 = 17
local num2 = 5
local q, r = divide_and_remainder(num1, num2)
tex.sprint(string.format("The quotient of ".. pc.. "d divided by"
.. pc.." d is:".. pc.." d\\par", num1, num2, q))
tex.sprint(string.format("The remainder is: "..pc.."d\\par", r))
}

The quotient of 17 divided by 5 is: 3
The remainder is: 2
Another solution is to use a local variable, for example:
local format = string.char(37) .. ".2f"

and then tex.print(string.format(format , ...))

Let’s examine the version of the function if it is defined in the macro \directlua.
The problem is the use of l’operator % (Modulus Operator and remainder of after an integer division).
The same problem occurs when using the string.format function and the %d or %i: placeholder for an
integer.
One solution for these two cases is to define a macro pc which replaces the %.
\makeatletter
\let\pc\@percentchar
\makeatother

The code becomes:
\directlua{
function divide_and_remainder(dividend, divisor)
if divisor == 0 then
tex.error("Error: Cannot divide by zero")
return nil

else
local quotient = math.floor(dividend / divisor)
local remainder = dividend \pc divisor
return quotient, remainder

end
end

local num1 = 17
local num2 = 5
local q, r = divide_and_remainder(num1, num2)

tex.sprint(string.format([[The quotient of \pc i divided by
\pc i is: \pc i\\]], num1, num2, q))
tex.sprint(string.format([[The remainder is: \pc i]], r))}
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(c) Variadic Functions

Use ... to handle a variable number of arguments:
First example:
It’s the easiest way to avoid problems linked to the #.

– 10 \directlua{
local function sum_all(...)
local total = 0
for _, value in ipairs{...} do
total = total + value

end
return total

end

tex.print(sum_all(1, 2, 3, 4))
}

– Second example:
Here, I’m using a new function from the table_getn package, which replaces an old Lua function
table.getn, which was used to obtain the size of the table.

100 \directlua{
local function sum_all(...)
local arg = {...}
local total = 0
for i = 1, utils.table_getn(arg) do
total = total + arg[i]

end
return total

end
local result = sum_all(10, 20, 30, 40)
tex.print(result)}

– Third example:
It’s always possible to use #, with a little effort (texhnic).

100 \bgroup
\catcode`\#=12
\directlua{
local function sum_all(...)
local arg = {...}
local total = 0
for i = 1, #arg do

total = total + arg[i]
end
return total

end
local result = sum_all(10, 20, 30, 40)
tex.print(result)}
\egroup

(d) Recursion

Lua supports recursive functions:

8! = 40320 \directlua{dofile("lua/fact.lua")}
\newcommand*{\luafact}[1]{\directlua{
tex.write(fact(\the\numexpr(#1)\relax))}%

}
$8! = \luafact{8}$
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(e) Methods (Object-like Syntax)

When defining functions for tables (objects), you can use the colon syntax (:) to automatically pass the
object itself as the first argument, usually called self.
Here’s an example:

5+2.50i \directlua{
z.A = point(0, 0)
z.B = point(5, 0)
L.AB = line(z.A, z.B)
T.ABC = L.AB:half()
_,_,z.C = T.ABC:get()
tex.print(tostring(z.C))}

Without the colon syntax, you would need to pass the object explicitly as the first argument:
T.ABC = L.AB.half(L.AB)
_,_,z.C = T.ABC.get(T.ABC)

half and get are methods defined for object tables. When called with the colon syntax, they automatically
receive the instance (self) they operate on.

32.7. Control structures

Control structures let your program make decisions and repeat actions. Lua has a small set of easy-to-use control
structures to help you write flexible and powerful code.
1. Conditional statements
Use if, elseif, and else when you want your code to do different things depending on conditions. This is how
your program can ”choose” between different options.
2. Loops
Loops are used to repeat actions:
while repeats as long as a condition is true. repeat ... until repeats until a condition becomes true (it always
runs at least once). for is used to count or go through elements in a table.
3. Local variables and blocks
When you create a variable using local, it only exists inside the block where you wrote it. A block can be a
function, a loop, or an if statement.
4. Breaking and returning
break lets you stop a loop early. return sends a value back from a function or stops it completely. Lua keeps
things simple, so once you learn these basic structures, you can write all kinds of logic in your programs!

1. if then else

x =1.2246467991474e-16
𝑥 = 0

\directlua{
x = math.sin(math.pi)
tex.print("x = ",x)

tex.print([[\\]])
if math.abs(x) < 1e-12 then
tex.print("$x = 0$")
elseif x >0 then
tex.print("$x > 0$")
else
tex.print("$x < 0$")

end
}

2. while

12345 \directlua{
i = 1
while i <= 5 do
tex.print(i)
i = i + 1

end}
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3. repeat

246 \directlua{
x = 0
repeat
x = x + 2
tex.print(x)

until x == 6}

4. Numeric for:
for init,max/min value, increment do statement(s) end

10, 20, 30, 40, 50. \directlua{
numbers = {10, 20, 30, 40, 50}
local nb = utils.table_getn(numbers)
for i = 1, nb do
local sep = (i < nb) and ", " or "."
tex.sprint(numbers[i] .. sep)

end}

5. Generic for:
for i,v in ipairs(t) do tex.print(v) end

a1b2 \directlua{
t = {a = 1, b = 2}
for k, v in pairs(t) do
tex.print(k, v)

end}

an example for the package:

C: (1+i)
A: (i)
B: (2-i)

\directlua{
init_elements()
z.A = point(0, 1)
z.B = point(2, -1)
z.C = point(1, 1)
for k, v in pairs(z) do
tex.sprint(k,": ","(".. tostring(v)..")")
tex.print('\\\\')

end}

6. Summary about for

Table 46: Comparison of ipairs and pairs in Lua

Feature ipairs(t) pairs(t)

Iterates over Numeric keys 1..n All keys (strings, numbers, etc.)
Order Guaranteed (1, 2, 3, …) Not guaranteed
Stops at First nil in sequence After all keys
Use case Arrays / Lists Tables / Dictionaries
Skips non-numeric 3 7

Includes holes 7 3

7. break and return

– break: exits a loop.

1234 \directlua{ for i = 1, 10 do
if i == 5 then break end
tex.print(i)

end}

– return: exits a function (or a chunk) with or without values.
Here’s an example with the following constraints:
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(i) The function loops over a list of numbers.
(ii) If it finds an even number (value % 2 == 0), it returns it immediately.
(iii) If it sees −1, it uses break to stop the loop without returning a value right away.
(iv) If no even number is found before a −1, the function returns nil at the end.

nil \makeatletter
\let\pc\@percentchar
\makeatother

\directlua{%
function find_first_even(t)
for i = 1, utils.table_getn(t) do

local value = t[i]
if value \pc 2 == 0 then

return value
elseif value == -1 then

break
end

end
return nil

end

local numbers = {1, 3, 5, -1, 4, 6}
tex.print(tostring(find_first_even(numbers))) }

32.8. Lua Sugar Syntax

The ”sugar syntax” in Lua refers to syntactic elements that make the language more concise and readable
changing its fundamental meaning. Here are the main forms of sugar syntax in Lua:

1. Method calls with ”:”
obj:method(arg) Is sugar for: obj.method(obj, arg)

The ”:” implicitly passes obj as the first argument (self), which is very helpful in object-oriented program-
ming.

2. Table field access with ”.”
t.key Is sugar for: t["key"]
This is more readable when the key is a valid identifier (no spaces, punctuation, etc.).

3. Shorthand table constructors
local t = {1, 2, 3} Is equivalent to: local t = {[1]=1, [2]=2, [3]=3}

And:
local t = {a = 1, b = 2} Is sugar for: local t = {["a"] = 1, ["b"] = 2}

4. Loop sugar (e.g., for k, v in pairs(t) do)
Even though pairs() is just a function, the way Lua loops over tables using for is very clean and readable.
k for keys , v for value.

for k, v in pairs(t) do
...

end

5. Logical expressions as default value tricks
x = a or b Is often used to mean: “if a is truthy, use it, otherwise use b”. Great for setting default values.

6. do ... end blocks
This is a way to create a local scope block — useful for limiting variable visibility.
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32.9. Example: Calculating the sum of 1 to 10

Lua is useful for advanced calculations that LaTeX alone cannot handle efficiently.

Sum of 1 to 10: 55 \directlua{
local somme = 0
for i = 1, 10 do
somme = somme + i

end
tex.print("Sum of 1 to 10: " .. somme)}

32.9.1. Example: Fibonacci

Calculation of the rank term 10

The term of rank 10 in the Fibonacci se-
quence is 𝑢10 = 55

\directlua{
function fibonacci(n)

if n == 0 then
return 0

elseif n == 1 then
return 1

else
return fibonacci(n - 1) + fibonacci(n - 2)

end
end}

The term of rank $10$ in the Fibonacci sequence
is
\(u_{10}=\directlua{tex.print(
fibonacci(10))}\)
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33. Transfers

The tkz-elements package strictly separates mathematical computation from graphical rendering. All ge-
ometric objects are created and manipulated internally in Lua, while drawing is performed by TikZ or tkz-
euclide.
A transfer is the explicit operation that communicates data between the Lua computational layer and the TEX
rendering layer.

Conceptually, the architecture may be summarized as:

Computation (Lua) ⟶ Transfer ⟶ Rendering (TikZ/TEX)

Objects remain invisible to TEX until they are explicitly transferred. This design guarantees numerical robust-
ness and a clear separation between computation and presentation.

33.1. Conceptual Overview

Three types of transfer mechanisms are available in tkz-elements:

1. Immediate transfer via the TEX input stream;

2. Object-based transfer through dedicated macros;

3. File-based transfer via external data files.

Each mechanism serves a different purpose depending on the size and nature of the data being communicated.

33.2. Object Serialization via tostring

The macro \tkzUseLua is the basic bridge from Lua to TEX. It evaluates a Lua expression and prints its result
into the TEX input stream. Internally, it uses Lua’s tostring() mechanism:

\def\tkzUseLua#1{\directlua{tex.sprint(#1)}}

As a consequence, any tkz-elements object may define a Lua __tostring metamethod to control its textual
TEX representation. This is used in particular for complex numbers (point).

Example with a point:

1-2.00i \directlua{
init_elements()
z.A = point(1, -2)

}
\tkzUseLua{tostring(z.A)}

Thus, the complex affix associated with point 𝐴 is printed using Lua’s __tostring metamethod (via tostring).

Example with a matrix:
The macro \tkzUseLua prints the value of a Lua expression as text (internally via tostring(<expr>)).15

[1 2
3 4]

\directlua{
init_elements()
local a, b, c, d = 1, 2, 3, 4
M.new = matrix({ { a, b }, { c, d } })}
\tkzUseLua{M.new:print()}

Other cases To transfer nil, true, and false, you must use tostring, However, you can directly transfer a
number or a string of characters.

\tkzUseLua{tostring(nil)}
\tkzUseLua{tostring(true)}
\tkzUseLua{"TANGENT"}
\tkzUseLua{math.pi}

15 Hence objects may customize their inline representation by defining a Lua __tostring metamethod.
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33.3. Immediate Transfer

Immediate transfer occurs when Lua prints data directly into the TEX input stream using tex.print.

Numerical example

5.0 \directlua{
init_elements()
z.A = point(3,4)
tex.print(point.abs(z.A))

}
The computed value is inserted directly into the document.

Boolean example

false \directlua{
init_elements()
z.A = point(0, 0)
z.B = point(3, 0)
z.C = point(0, 2)
T.ABC = triangle(z.A, z.B, z.C)
tex.print(tostring(T.ABC:check_equilateral()))

}
This mechanism allows Lua computations to influence TEX logic through conditional statements.

Note: It is possible to choose when to perform the transfer. A macro has been created for this purpose, but
you can also create your own: it is called \tkzUseLua. It is defined as follows:

\def\tkzUseLua#1{\directlua{tex.print(#1)}}

This macro prints the value of a Lua variable or expression directly into the TeX stream.

Example.
The following Lua code computes whether two lines intersect:
The intersection of the two lines lies at a point whose affix is:
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\directlua{
z.a = point(4, 2)
z.b = point(1, 1)
z.c = point(2, 2)
z.d = point(5, 1)
L.ab = line(z.a, z.b)
L.cd = line(z.c, z.d)
det = (z.b - z.a) ^ (z.d - z.c)
if det == 0 then bool = true
else bool = false

end
x = intersection (L.ab, L.cd)}

The intersection of the two lines lies at
a point whose affix is:\tkzUseLua{tostring(x)}

\begin{tikzpicture}
\tkzGetNodes
\tkzInit[xmin =0,ymin=0,xmax=5,ymax=3]
\tkzGrid\tkzAxeX\tkzAxeY
\tkzDrawPoints(a,...,d)
\ifthenelse{\equal{\tkzUseLua{bool}}{%
true}}{\tkzDrawSegments[red](a,b c,d)}{%
\tkzDrawSegments[blue](a,b c,d)}
\tkzLabelPoints(a,...,d)

\end{tikzpicture}
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𝑦
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33.4. Object-Based Transfer

Geometric objects stored in Lua tables must be converted into TikZ-compatible structures before drawing.

33.4.1. Transferring points

Points are internally stored as complex affixes. The macro \tkzGetNodes converts them into TikZ coordinates.

𝑜

𝑎1

𝑎2

𝑎′

𝑎″

\directlua{
init_elements()
z.o = point(0, 0)
z.a_1 = point(2, 1)
z.a_2 = point(1, 2)
z.ap = z.a_1 + z.a_2
z.app = z.a_1 - z.a_2

}

\begin{center}
\begin{tikzpicture}[ scale = 1.5]

\tkzGetNodes
\tkzDrawSegments(o,a_1 o,a_2 o,a' o,a'')
\tkzDrawSegments[red](a_1,a' a_2,a')
\tkzDrawSegments[blue](a_1,a'' a_2,a'')
\tkzDrawPoints(a_1,a_2,a',o,a'')
\tkzLabelPoints(o,a_1,a_2,a',a'')

\end{tikzpicture}
\end{center}
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33.4.2. Transferring paths and curves

\directlua{
init_elements()
PF.ex = pfct("(cos(t))^3", "(sin(t))^3")
PA.curve = PF.ex:path(0, 2*math.pi, 100)
}

\begin{center}
\begin{tikzpicture}[scale=2]
\tkzDrawCoordinates[smooth,red,fill=orange](PA.curve)

\end{tikzpicture}
\end{center}

The Lua object is serialized into a coordinate list interpreted by TikZ.

33.4.3. File-Based Transfer

For large datasets or high-resolution curves, it may be preferable to generate an external file.
This time, the transfer will be carried out using an external file. The following example is based on this one,
but using a table.
Generating a data file: The file tmp.table is created using the 𝑓 function.
The file tmp.table now contains numerical data. Using the generated file: Here, the curve is plotted
using TikZ.

𝑥

𝑦
\directlua{
init_elements()
z.a = point(1, 0)
z.b = point(3, 2)
z.c = point(0, 2)
A,B,C = tkz.parabola (z.a, z.b, z.c)

function f(t0, t1, n)
local out=assert(io.open("tmp.table","w"))
local y
for t = t0,t1,(t1-t0)/n do
y = A*t^2+B*t +C
out:write(utils.checknumber(t), " ",

utils.checknumber(y), " i\string\n")
end
out:close()

end}

\begin{tikzpicture}
\tkzGetNodes
\tkzInit[xmin=-1,xmax=5,ymin=0,ymax=5]
\tkzDrawX\tkzDrawY
\tkzDrawPoints[red,size=2](a,b,c)
\directlua{f(-1,3,100)}%
\draw[domain=-1:3] plot[smooth]

file {tmp.table};
\end{tikzpicture}

File-based transfer provides scalability and allows interoperability with external plotting tools such as pgfplots.

33.5. Dynamic TEX--Lua Interaction

Transfers are bidirectional. TEX may pass parameters to Lua for computation.

\newcommand{\ComputeSquare}[1]{%
\directlua{tex.print(#1 * #1)}%

}
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Usage:

The square of 5 is \ComputeSquare{5}.

The square of 5 is 25.

This interaction enables dynamic parameterized geometry, where document input directly controls Lua compu-
tations.

Transfers in tkz-elements may therefore be immediate, object-based, or file-based, depending on the size and
structure of the data. This layered architecture ensures a clean separation between computation and graphical
representation.

34. TeX Interface Macros (tkz-elements.sty)

34.1. Purpose

The file tkz-elements.sty provides a small set of macros that act as a bridge between TEX and the Lua engine
used by tkz-elements. Their main goals are:

– printing Lua values safely in TEX;

– transferring geometric objects (points, paths, circles) from Lua to TikZ;

– simplifying the drawing stage when computations are done in Lua.

Unless stated otherwise, these macros assume that tkz-elements has been initialized in Lua (typically via
\directlua{init_elements()}.

34.2. Summary of provided macros

Macro Reference

\tkzUseLua{...}
\tkzPrintNumber{...}
\tkzEraseLuaObj{name}
\tkzDrawCoordinates(…)
\tkzGetPointsFromPath{P}{A}
\tkzDrawPointsFromPath(…)
\tkzDrawSegmentsFromPaths(…)
\tkzDrawCirclesFromPaths(…)

Note: The exact internal Lua object layout may evolve; these macros are designed to remain stable at the user
level.

34.3. Macro \tkzUseLua

Syntax:
tkzUseLua{<lua-expression>\}

Description: Evaluates the Lua expression and prints its result in the TEX stream.

Argument:

– <lua-expression>: a Lua expression returning a value.

Notes:

– This macro is meant for values (numbers, booleans, strings).

– For Lua objects (point, line, circle, path, …), prefer dedicated transfer/draw macros or call an explicit
Lua method that returns a value.
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Example:

\directlua{init_elements()
z.A = point(0,0)
z.B = point(4,2)

}
The slope is \tkzUseLua{(z.B.im-z.A.im)/(z.B.re-
z.A.re)}.

This macro evaluates a Lua expression and inserts its result in the document.
Syntax: \tkzUseLua{<lua-code>}
Example usage:

\tkzUseLua{checknumber(math.pi)}

34.4. Macro \tkzPrintNumber

This macro formats and prints a number using PGF’s fixed-point output, with a default precision of 2 decimal
places.

Syntax:

\tkzPrintNumber{<lua-expression>} \tkzPN{<lua-expression>}

Example:

\tkzPrintNumber{pi} % outputs 3.14
\tkzPrintNumber[4]{sqrt(2)} % outputs 1.4142

Alias: The macro \tkzPN is a shorthand for \tkzPrintNumber.

Example:

\directlua{init_elements()
x = math.pi/7

}
$\alpha = \tkzPN{x}$.

34.5. Macro \tkzEraseLuaObj

Syntax:

\tkzEraseLuaObj{<name>}

Description: Removes a stored Lua object from the global storage table (typically z, L, C, CO, etc., depending
on your conventions).
Syntax: \tkzEraseLuaObj{<object>}
Example usage:

\tkzEraseLuaObj{z.A}
\tkzEraseLuaObj{T.ABC}

Notes: Use this macro to avoid name collisions when compiling large documents or when reusing the same
object names across figures.

34.6. Macro \tkzPathCount

This macro retrieves the number of vertices in a Lua path and stores the result in a TeX macro.
Syntax: \tkzPathCount(<lua-path>){<MacroName>}
Arguments:
<lua-path>: identifier of a Lua path object. <MacroName>: name of a TeX macro (without the backslash) that
will store the count.
Example usage:
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\directlua{
z.A = point(0, 0)
z.B = point(5, 4)
L.AB = line(z.A, z.B)
PA.AB = L.AB:path(3)
z.O = point(2, 0)
}
\tkzPathCount(PA.AB){N}
\begin{center}
\begin{tikzpicture}
\tkzGetNodes
\tkzDrawCoordinates[blue](PA.AB)
\tkzDrawPointsFromPath[red,size=2](PA.AB)

\foreach \i in {1,...,\N}{
\tkzGetPointFromPath(PA.AB,\i){P\i}
\tkzDrawSegment[orange](O,P\i)
}

\end{tikzpicture}
\end{center}

34.7. Macro \tkzDrawCoordinates

This macro draws a curve using the TikZ plot coordinates syntax, with coordinates generated by Lua.
Syntax: \tkzDrawCoordinates[<options>](lua-path)
Example usage:

𝐴 𝐵

𝐶
\directlua{

z.A = point(0, 0)
z.B = point(6, 0)
z.C = point(1, 4)
T.ABC = triangle(z.A, z.B, z.C)
z.M = T.ABC.bc.mid
z.N = T.ABC.ca.mid
PA.path = T.ABC:path(z.M,z.N,4)

}
\begin{tikzpicture}[gridded]
\tkzGetNodes
\tkzDrawPolygon(A,B,C)
\tkzDrawCoordinates[orange,thick](PA.path)
\tkzDrawPoints(A,B,C,M,N)
\tkzLabelPoints(A,B)
\tkzLabelPoints[above](C)
\end{tikzpicture}

Description: Draws a Lua path object as a TikZ path. This macro is typically used after the computational
phase in Lua. Draws the polyline defined by the sequence of points in a Lua path, using explicit (x,y)
coordinates.

Alias:

\tkzDrawPath[<tikz-options>](lua-path)

34.8. Macro \tkzDrawPointsFromPath

This macro draws all points of a path using tkzDrawPoint, without exporting point names.

Syntax: \tkzDrawPointsFromPath[<options>](lua-path)

Example usage:
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\directlua{
init_elements()
LP.test = list_point()
LP.test:add(point(0, 0))
LP.test:add(point(1, 0))
LP.test:add(point(1, 1))
PA.curve = LP.test:as_path()
}
\begin{tikzpicture}
\tkzDrawCoordinates[blue](PA.curve)
\tkzDrawPointsFromPath[red,size=2](PA.curve)
\end{tikzpicture}

34.9. Macro \tkzGetPointsFromPath

This macro defines TikZ points from a Lua path. Each point is named with a base name followed by an index.
Syntax: \tkzGetPointsFromPath[<options>](<path>,<basename>)

Description: Exports the points of a Lua path as named TEX/TikZ points. The naming scheme is <prefix>1,
<prefix>2, …

Example:

\directlua{
init_elements()
PA.g = path({ "(0, 0)", "(1, 0)","(1, 1)" })

}
\begin{tikzpicture}

\tkzGetPointsFromPath(PA.g,A)
\tkzDrawPolygon(A_1,A_2,A_3)
\tkzDrawPoints(A_1,A_2,A_3)

\end{tikzpicture}

34.10. Macro \tkzGetPointFromPath

This macro extracts the i-th vertex of a Lua path and defines it as a TikZ point with a given name.
Syntax: \tkzGetPointFromPath(<PathLua>,<index>){<PointName>}
Arguments:
<PathLua>: identifier of a Lua path object. <index>: index of the vertex to retrieve (TeX number or numeric
macro). <PointName>: name of the TikZ point to create.

Example usage:

% Get the 3rd vertex of PA.A and name it P3
\tkzGetPointFromPath(PA.A,3){P3}
% With counting and a loop
\tkzPathCount(PA.A){N}
\foreach \i in {1,...,\N}{
\expandafter\tkzGetPointFromPath\expandafter(PA.A,\i){P\i}
}

34.11. Macro \tkzDrawSegmentsFromPaths

Description: Draws segments encoded in one or more Lua paths (pairs of points or consecutive points,
depending on the chosen convention).
Syntax: \tkzDrawSegmentsFromPaths[<options>](<lua-path-start>,<lua-path-end>)
Example:
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\directlua{
init_elements()
z.A = point(0, 0)
z.B = point(3, 0)
C.AB = circle(z.A, z.B)
PA.c = path()
PA.u = path()
PA.v = path()
for i = 0, 18, 2 do

local angle = i * 2 * math.pi / 18
local p = point(polar(8, angle))
local Lu, Lv = C.AB:tangent_from(p)
local u , v = Lu.pb, Lv.pb
PA.c:add_point(p)
PA.u:add_point(u)
PA.v:add_point(v)

end}

\begin{center}
\begin{tikzpicture}[scale =.6]
\tkzGetNodes
\tkzDrawSegmentsFromPaths[draw,red](PA.c,PA.u)
\tkzDrawSegmentsFromPaths[draw,red](PA.c,PA.v)
\tkzDrawCircle[blue](A,B)
\tkzDrawPoints(A,I,u,v)

\end{tikzpicture}
\end{center}

34.12. Macro \tkzDrawCirclesFromPaths

This macro draws circles defined by two paths: one for the centers and one for the points through which each
circle passes.

Syntax: \tkzDrawCirclesFromPaths[<options>](<PA.center>,<PA.through>)
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Example usage:

\tkzDrawCirclesFromPaths[blue](PA.O, PA.A)

See the document Euclidean Geometry presented in altermundus.frfor other examples.

\directlua{
init_elements()
z.A = point(-4, -4)
z.B = point(4, -4)
L.AB = line(z.A, z.B)
C.AB = circle(z.A, z.B)
S.AB = L.AB:square()
_, _, z.C, z.D = S.AB:get()
z.O = S.AB.ac.mid
z.a = S.AB.ab.mid
z.c = S.AB.cd.mid
z.o1 = tkz.midpoint(z.a, z.O)
z.o = tkz.midpoint(z.c, z.O)
z.b = S.AB.bc.mid
z.g = (z.o1 - z.O) + (z.b - z.O)
z.o2 = intersection(line(z.c, z.g), line(z.O,z.b))
z.o3 = (z.o - z.O) + (z.o2 - z.O)
z.j = intersection(line(z.c, z.b), line(z.o2,z.o3))
local C2 = circle(z.O, z.a)
local C1 = circle(z.o, z.c)
local C3 = circle(z.o3, z.j)
PA.pc, PA.pt, n = C1:CCC(C2, C3)
}

\begin{center}
\begin{tikzpicture}[scale=1]
\tkzGetNodes
\tkzDrawPolygon[cyan](A,B,C,D)
\tkzDrawCircles(O,a o,c o1,a o2,b o3,j)
\tkzDrawCirclesFromPaths[draw,red](PA.pc,PA.pt)
\end{tikzpicture}
\end{center}
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34.13. Macro \tkzDrawFromPointToPath

This macro draws a set of line segments from a given TikZ point to every point of a Lua path object.

Syntax: \tkzDrawFromPointToPath[<options>](<point-tikz>,<lua-path>)

Arguments:
<options> (optional): pgf/tikz drawing options (color, thickness, etc.).
<point-tikz>: the name of a TikZ point (already defined).
<lua-path>: identifier of a Lua path object.

Example usage:

𝑂

𝐴

𝑚

𝑛
𝑤

\directlua{
init_elements()
z.O = point(0, 0)
z.A = point(5, 1)
z.Ta = point(8, 2)
C.A = circle(z.A, z.Ta)
L.OA = line(z.O,z.A)
z.x, z.y = intersection(C.A, L.OA,{near=z.O})
C.A.through = z.y
z.m = tkz.midpoint(z.O, z.x)
z.n = tkz.midpoint(z.O, z.y)
z.w = tkz.midpoint(z.m, z.n)
PA.A = path()
PA.c = path()
for t = 0, 1 - 1e-12, 0.1 do

PA.A:add_point(C.A:point(t))
local m = tkz.midpoint(z.O, C.A:point(t))
PA.c:add_point(m)

end
}
\begin{center}
\begin{tikzpicture}[scale=.8]
\tkzGetNodes
\tkzDrawCircle(A,Ta)
\tkzDrawLine(O,A)
\tkzDrawPoints(O,A,m,n,w,x,y)
\tkzLabelPoints(O,A,m,n,w)
\tkzDrawCircle[red](w,n)
\tkzDrawPointsFromPath[red](PA.c)
\tkzDrawPointsFromPath[blue](PA.A)
\tkzDrawSegmentsFromPaths[draw,teal](PA.c,PA.A)
\tkzDrawFromPointToPath[orange](O,PA.A)

\end{tikzpicture}
\end{center}
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34.14. Macros \tkzDrawPointOnGraph and \tkzDrawPointsOnGraph

These macros are described in the section [35]

34.15. Macros \tkzDrawPointOnParamGraph and \tkzDrawPointsOnParamGraph

These macros are described in the section [36]

34.16. Archimedes spiral, a complete example

This example is built with the help of some of the macros presented in this section. It is inspired by an example
created with tkz-euclide by Jean-Marc Desbonnez.
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\directlua{
z.O = point(0, 0)
z.A = point(5, 0)
L.OA = line(z.O, z.A)
PA.spiral = path()
PA.center = path()
PA.through = path()
PA.ray = path()
for i = 1, 48 do

local k = i / 48
z["P"..i] = L.OA:point(k)
local angle = i * tkz.tau / 48
z["r"..i] = point(polar(5, angle))
ray = line(z.O, z["r"..i])
circ = circle(z.O, z["P"..i])
z["X"..i], _ = intersection(ray, circ, { near = z["r"..i] })
PA.spiral:add_point(z["X"..i])
PA.center:add_point(z.O)
PA.through:add_point(z["P"..i])
PA.ray:add_point(z["r"..i])

end}
\begin{center}
\begin{tikzpicture}[scale = .8]
\tkzGetNodes
\tkzDrawCircle(O,A)
\tkzDrawCirclesFromPaths[draw,

orange!50](PA.center,PA.through)
\tkzDrawSegmentsFromPaths[draw,teal](PA.center,PA.ray)
\tkzDrawPath[red,thick,smooth](PA.spiral)
\tkzDrawPointsFromPath[blue, size=2](PA.spiral)
\end{tikzpicture}

\end{center}
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35. Class fct

The fct class represents a real-valued function

𝑥⟼𝑓(𝑥),

defined and evaluated in Lua. A fct object encapsulates either (i) a numerical expression (given as a string in
the variable x), or (ii) a callable Lua function, together with methods for evaluation, sampling, and geometric
construction.
By convention, function objects are stored in a Lua table named F. Although this name is not mandatory, using
F is strongly recommended for consistency across examples and documentation. Each entry of F associates a
symbolic name (such as fa) with an object of class fct. If a custom table name is used, it must be initialized
manually. The init_elements() function will reset the F table if it has already been defined.

Mathematical expressions. All expressions defining a fct object are evaluated using standard Lua rules. A
fct object can be evaluated at a real number, sampled on an interval, converted into a path (for drawing with
TikZ), or exported to a data file.

Important. In function and parametric function definitions (fct and pfct), expressions must be written using
standard mathematical notation. The Lua prefix math. must not be used.
In contrast, in all other methods and Lua code fragments of tkz-elements, standard Lua syntax applies, and
the use of the prefix math. is required whenever a Lua mathematical function is called. For convenience, users
may define local aliases in their Lua code, such as local sin, cos, pi = math.sin, math.cos, math.pi.

Correct:

sin(x), exp(-x^2)

Incorrect (in fct and pfct):

math.sin(x), math.exp(-x^2)

35.1. Methods of the class fct

The fct class offers a compact set of methods, centered around: (i) creating a function object, (ii) evaluating
it, and (iii) producing a path or a data file.

Table 47: fct methods.
Methods Reference

Creation

new(expr_or_fn) [35.1.1]
compile(expr) [35.1.2]

Reals / evaluation

eval(x) [35.1.3]

Points / Paths

point(x) [35.1.4]
path(xmin,xmax,n) [35.1.5]

35.1.1. Constructor new(expr_or_fn)

Description: Creates a function object from either a Lua expression (string) or a callable Lua function. When
a string is provided, it represents an expression in the variable x, evaluated using standard Lua rules (therefore
requiring math. prefixes).
Arguments:

– expr_or_fn: either
– a string representing an expression in x, or
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– a callable Lua function f(x).

Returns: a fct object.
Example:

\directlua{
init_elements()
F.f = fct:new("x*math.exp(-x^2)+1")
tex.print(F.f:value(0))

}

35.1.2. Function compile(expr)

Description: Compiles an expression and returns a callable Lua function (or wraps it into a fct, depending
on the implementation). This is a low-level helper mainly intended for internal use.
Argument: expr (string, expression in variable x). Returns: a callable function or a fct object (de-
pending on implementation).

35.1.3. Method eval(x)

Description: Evaluates the function at the real number x.
Returns: a number (which may be nan or infinite if the expression is not defined).

init_elements()
F.fa = fct("sin(x) + x")
PA.curve = F.fa:path(-2, 5, 200)
z.A = F.fa:point(1.3)
tex.print(F.fa:eval(math.pi/2))

35.1.4. Method point(x)

Description: Constructs the point (𝑥,𝑓(𝑥)) associated with the function. This method provides a direct bridge
between numerical evaluation and geometric construction.
Returns: a point.
Example:

init_elements()
F.fa = fct("sin(x)+x")
PA.curve = F.fa:path(-2, 5, 200)
z.A = F.fa:point(1.5)
% or z.A = point(1.3, F.fa:eval(1.3) )

35.1.5. Method path(xmin,xmax,n)

Description: Samples the function on [𝑥𝑚𝑖𝑛,𝑥𝑚𝑎𝑥] using n subdivisions and returns a path. Invalid values
are skipped (depending on the internal policy).
Returns: a path.
Example:
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𝑥

𝑦

\directlua{
init_elements()
F.fa = fct("sin(x) + x")
PA.curve = F.fa:path(-1, 5, 200)
z.A = F.fa:point(math.pi/2)

}
\begin{tikzpicture}[scale=.75,gridded]

\tkzInit[xmin=-1,xmax=5,ymin=-1,ymax=2]
\tkzDrawX\tkzDrawY
\tkzGetNodes
\tkzDrawCoordinates[smooth,blue,thick](PA.curve)
\tkzDrawPoint[red](A)
\tkzDrawPointsOnGraph[blue]{0,1,2}{fa}
\tkzDrawPointOnGraph[red]{-1}{fa}

\end{tikzpicture}

35.2. Macros \tkzDrawPointOnGraph and \tkzDrawPointsOnGraph

These macros allow drawing points on the graph of a function defined in the module system.
The function must already exist in the module table F.

35.2.1. Macro \tkzDrawPointOnGraph

Syntax

\tkzDrawPointOnGraph[<TikZ options>]{<x>}{<name>}

Description This macro draws a point belonging to the graph of a real function stored in the module F.
The drawn point has coordinates

(𝑥, 𝑓(𝑥)),

where f denotes the function object F.<name>.

Arguments

– <TikZ options> (optional): graphical options applied to the point

– <x>: abscissa of the point

– <name>: name of the function stored in F

Example

\tkzDrawPointOnGraph[blue]{4}{fa}

35.2.2. Macro \tkzDrawPointsOnGraph

Syntax

\tkzDrawPointsOnGraph[<TikZ options>]{<x1,x2,...,xn>}{<name>}

Description This macro draws several points belonging to the graph of a real function stored in the module
fct.
For each value 𝑥𝑖 in the list, a point of coordinates

(𝑥𝑖, 𝑓(𝑥𝑖))

is computed and drawn.
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Arguments

– <TikZ options> (optional): graphical options applied to all points

– <x1,x2,...,xn>: comma-separated list of abscissas

– <name>: name of the function stored in F

Example

\tkzDrawPointsOnGraph[red]{-2,0,2,3,5}{fa}

Remarks

– These macros assume that the function is already defined in the module F.

– All evaluations are performed in Lua.

– The macros are compatible with paths drawn using \tkzDrawCoordinates.

Example:

𝑥

𝑦 \directlua{
init_elements()
F.fa = fct("x*exp(-x^2)+1")
PA.curve = F.fa:path(-3, 5, 20)

}
\begin{tikzpicture}[gridded]

\tkzInit[xmin=-3,xmax=5,ymin=-1,ymax=2]
\tkzDrawX\tkzDrawY
\tkzDrawCoordinates[smooth,cyan](PA.curve)
\tkzDrawPointsOnGraph[red]{-2,0,2,3,5}{fa}
\tkzDrawPointOnGraph[blue]{1}{fa}

\end{tikzpicture}
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36. Class pfct

The pfct class represents a parametric curve

𝑡⟼(𝑥(𝑡),𝑦(𝑡)),

defined and evaluated in Lua. A pfct object encapsulates two expressions (or callable Lua functions) describ-
ing the 𝑥- and 𝑦-components of the curve, together with methods for evaluation, sampling, and geometric
construction.
By convention, parametric function objects are stored in a Lua table named PF. Although this name is not
mandatory, using PF is strongly recommended for consistency across examples and documentation. Each entry
of PF associates a symbolic name (such as lis) with an object of class pfct. If a custom table name is used,
it must be initialized manually. The init_elements() function will reset the PF table if it has already been
defined.

Mathematical expressions. All expressions defining a pfct object are evaluated using standard Lua rules.
A pfct object can be evaluated at a parameter value, converted into points, sampled into a path, or exported
to a data file suitable for TikZ plot file input.

Important. In function and parametric function definitions (fct and pfct), expressions must be written using
standard mathematical notation. The Lua prefix math. must not be used.
In contrast, in all other methods and Lua code fragments of tkz-elements, standard Lua syntax applies, and
the use of the prefix math. is required whenever a Lua mathematical function is called. For convenience, users
may define local aliases in their Lua code, such as local sin, cos, pi = math.sin, math.cos, math.pi.
Correct:

sin(x), exp(-x^2)

Incorrect (in fct and pfct):

math.sin(x), math.exp(-x^2)

36.1. Methods of the class pfct

Table 48: pfct methods.
Methods Reference

Constructor

new(exprx,expry) [36.1.1]
compile(exprx,expry) [36.1.2]

Methods Returning a Real Number

x(t) [36.1.3]
y(t) [36.1.4]
point(t) [36.1.5]

Methods Returning a Path

path(tmin,tmax,n) [36.1.6]

36.1.1. Constructor new(exprx,expry)

Description: Creates a parametric function object from two expressions or callable Lua functions describing
the components 𝑥(𝑡) and 𝑦(𝑡). When strings are provided, they represent Lua expressions in the variable t,
evaluated using standard Lua rules (therefore requiring math. prefixes).
Arguments:

– exprx: a string expression in t, or a callable Lua function representing 𝑥(𝑡);

– expry: a string expression in t, or a callable Lua function representing 𝑦(𝑡).

Returns: a pfct object.
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36.1.2. Function compile(exprx,expry)

Description: Compiles the two expressions defining 𝑥(𝑡) and 𝑦(𝑡) and returns the corresponding callable Lua
functions (or wraps them into a pfct object, depending on the implementation). This is a low-level helper
mainly intended for internal use.

36.1.3. Method x(t)

Description: Evaluates the 𝑥-component of the parametric curve at parameter t.
Returns: a number.

36.1.4. Method y(t)

Description: Evaluates the 𝑦-component of the parametric curve at parameter t.
Returns: a number.

36.1.5. Method point(t)

Description: Constructs the point (𝑥(𝑡),𝑦(𝑡)) associated with the parametric curve. This method provides a
direct bridge between numerical evaluation and geometric construction.
Returns: a point.

36.1.6. Method path(tmin,tmax,n)

Description: Samples the parameter 𝑡 on the interval [𝑡𝑚𝑖𝑛,𝑡𝑚𝑎𝑥] using n subdivisions and returns the
corresponding path. Invalid values (NaN, infinities) may be skipped according to the internal policy.
Returns: a path.
Example:

\directlua{
init_elements()
PF.lis = pfct("sin(5*t)", "cos(3*t)")
PA.curve = PF.lis:path(0, 2*math.pi, 400)
}

\begin{center}
\begin{tikzpicture}[scale=2]
\tkzDrawCoordinates[smooth,cyan](PA.curve)

\end{tikzpicture}
\end{center}

36.2. Macros \tkzDrawPointOnParamGraph and \tkzDrawPointsOnParamGraph

These macros allow drawing points on a parametric curve defined in the module system.
The parametric function must already exist in the module table PF.

36.2.1. Macro \tkzDrawPointOnParamGraph

Syntax

\tkzDrawPointOnParamGraph[<TikZ options>]{<t>}{<name>}

Description This macro draws a point belonging to a parametric curve stored in the module PF.
The drawn point has coordinates

(𝑥(𝑡), 𝑦(𝑡)),

where the parametric curve is defined by the object PF.<name>.
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Arguments

– <TikZ options> (optional): graphical options applied to the point

– <t>: value of the parameter

– <name>: name of the parametric function stored in PF

Example

\tkzDrawPointOnParamGraph[blue]{1.5}{lis}

36.2.2. Macro \tkzDrawPointsOnParamGraph

Syntax

\tkzDrawPointsOnParamGraph[<TikZ options>]{<t1,t2,...,tn>}{<name>}

Description This macro draws several points belonging to a parametric curve stored in the module PF.
For each value 𝑡𝑖 in the list, a point of coordinates

(𝑥(𝑡𝑖), 𝑦(𝑡𝑖))

is computed and drawn.

Arguments

– <TikZ options> (optional): graphical options applied to all points

– <t1,t2,...,tn>: comma-separated list of parameter values

– <name>: name of the parametric function stored in PF

Example

\tkzDrawPointsOnParamGraph[red]{0,0.5,1,1.5,2}{lis}

Remarks

– These macros assume that the parametric function is already defined in the module PF.

– All evaluations are performed in Lua.

– The macros are compatible with parametric curves drawn using \tkzDrawCoordinates.

Example:

\directlua{
init_elements()
PF.lem = pfct("cos(t+pi/2)", "sin(2*t)")
PA.courbe = PF.lem:path(0, 2*math.pi, 200)
z.A = PF.lem:point(math.pi/2)
}
\begin{center}
\begin{tikzpicture}[scale=2]
\tkzGetNodes

\tkzDrawCoordinates[smooth,cyan](PA.courbe)
\tkzDrawPoint[blue](A)
\tkzDrawPointsOnParamGraph[red]{0,2,3,5}{lem}
\tkzDrawPointOnParamGraph[blue]{4}{lem}

\end{tikzpicture}
\end{center}
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37. Metapost

This is for guidance only. As I don’t know metapost, I’ve simply developed the minimum to show how to
proceed. The only way I’ve found to transfer points is via an external file. The macro \tkzGetNodesMP does
the job. Here’s its code.
Remark: This approach is minimal and experimental. The MetaPost integration shown here is primarily
intended to demonstrate that point data from Lua can be reused in other graphical systems. While MetaPost is
not officially supported by tkz-elements, this example illustrates how external file-based communication can
serve as a general method for transferring geometric information.

\def\tkzGetNodesMP#1{\directlua{
local out = assert(io.open("#1.mp", "w"))
local names = {}
for K, _ in pairs(z) do
table.insert(names, tostring(K))

end
table.sort(names)
out:write("pair ", table.concat(names, ", "), ";\string\n")
for _, name in ipairs(names) do
local V = z[name]
if V then

out:write(name, " := (", V.re, "cm,", V.im, "cm);\string\n")
end

end
out:close()

}}

\directlua{
z.A = point(0, 1)
z.B = point(2, 0)

}
\tkzGetNodesMP{myfic}

\begin{mplibcode}
input myfic.mp ;
pickup pencircle scaled 1mm;

draw A; draw B;
pickup defaultpen;

draw A--B;
\end{mplibcode}
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38. Computational Model and Geometric Engine

38.1. Introduction

The package tkz-elements is not merely a collection of geometric construction commands. It implements a
coherent computational geometry engine based on a unified mathematical model.
This chapter presents the mathematical and computational foundations underlying the package. While most
users interact with high-level geometric objects such as point, line, circle, triangle, or conic, all construc-
tions ultimately rely on a compact algebraic core and a carefully designed numerical strategy.
The purpose of this chapter is threefold:

– to describe the mathematical model used internally,

– to explain the numerical robustness strategy,

– to clarify the architectural principles governing the engine.

This chapter may be read independently as a technical overview of the geometric engine.

38.2. The Complex-Plane Model

All planar points are represented internally as complex numbers:

𝑧 = 𝑥+𝑖𝑦,

where 𝑥 and 𝑦 are real coordinates.
This choice provides a compact and algebraically coherent framework for geometric computations. Vector
addition, subtraction, rotation, and homothety become natural algebraic operations.
The class point therefore has a dual interpretation: it behaves both as a geometric point in the Euclidean plane
and as a complex number in the algebraic model. This design avoids maintaining separate vector and complex
abstractions and provides a compact, coherent framework for geometric computations.
The complex-plane representation allows:

– direct implementation of vector arithmetic,

– concise expressions for rotations and symmetries,

– natural encoding of orientation via complex multiplication,

– simplified determinant and dot-product calculations.

The use of complex numbers ensures both elegance and computational efficiency.

38.2.1. The Point Class as a Complex Number

For example,

z.A = point(1, 2)
z.B = point(1, -1)

define two point objects whose associated affixes are

𝑧𝐴 = 1+2𝑖, 𝑧𝐵 = 1−𝑖.

The notation z.A refers to a Lua object stored in table z, whereas 𝑧𝐴 denotes its associated complex number.

If one prefers to work with standalone variables (without using reserved tables), one may also write:

za = point(1, 2)
zb = point(1, -1)

The only difference is organizational: z.A is stored in the table z, while za is a regular Lua variable.

The algebraic structure is implemented through Lua metamethods and a small set of class methods, allowing
standard operators to perform geometric operations in a natural way.
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Table 49: Point (complex) metamethods.
Metamethod Application Result

add(z1,z2) z.a + z.b affix
sub(z1,z2) z.a - z.b affix
unm(z) -z.a affix
mul(z1,z2) z.a * z.b affix
concat(z1,z2) z.a .. z.b dot product (real number)a
pow(z1,z2) z.a ^ z.b determinant (real number)
div(z1,z2) z.a / z.b affix
tostring(z) tostring(z.a) TeX-friendly display
tonumber(z) tonumber(z.a) affix or nil
eq(z1,z2) z.a == z.b boolean

a If 𝑂 is the origin of the complex plane, then 𝑧_1..𝑧_2 corresponds to the dot product of the vectors ⃗⃗⃗⃗⃗⃗⃗⃗⃗⃗⃗⃗⃗𝑂𝑧_1 and ⃗⃗⃗⃗⃗⃗⃗⃗⃗⃗⃗⃗⃗𝑂𝑧_2.

Table 50: Point (complex) class methods.
Method Application Result

conj() z.a:conj() affix (conjugate)
mod() z.a:mod() real number (modulus)
abs() z.a:abs() real number (modulus)
norm() z.a:norm() real number (squared modulus)
arg() z.a:arg() real number (argument in radians)
get() z.a:get() re and im (two real numbers)
sqrt() z.a:sqrt() affix

38.2.2. Example of complex use

Let za = math.cos(a) + i math.sin(a) . This is obtained from the library by writing

za = point(math.cos(a),math.sin(a)).

Then z.B = z.A * za describes a rotation of point A by an angle a.
\directlua{
init_elements()
z.O = point(0, 0)
z.A = point(1, 2)
a = math.pi / 6
za = point(math.cos(a), math.sin(a))
z.B = z.A * za}
\begin{tikzpicture}
\tkzGetNodes
\tkzDrawPoints(O,A,B)
\tkzDrawArc[->,delta=0](O,A)(B)
\tkzDrawSegments[dashed](O,A O,B)
\tkzLabelAngle(A,O,B){$\pi/6$}
\end{tikzpicture}

𝜋/6
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38.2.3. Point operations (complex)

\directlua{
init_elements()
z.o = point(0, 0)
z.a = point(1, -1)
z.b = point(2, 1)
z.bp = -z.b
z.c = z.a + z.b
z.d = z.a - z.b
z.e = z.a * z.b
z.f = z.a / z.b
z.ap = point.conj(z.a)
z.g = z.b * point(math.cos(math.pi / 2),

math.sin(math.pi / 2))}

\begin{tikzpicture}
\tkzGetNodes
\tkzInit[xmin=-2,xmax=3,ymin=-2,ymax=3]
\tkzGrid
\tkzDrawSegments(o,a o,b o,c o,e o,b')
\tkzDrawSegments(o,f o,g)
\tkzDrawSegments[red](a,c b,c b',d a,d)
\tkzDrawPoints(a,...,g,o,a',b')
\tkzLabelPoints(o,a,b,c,d,e,f,g,a',b')
\end{tikzpicture}

𝑜

𝑎

𝑏

𝑐

𝑑

𝑒
𝑓

𝑔

𝑎′

𝑏′

38.2.4. Barycentric Combination

A fundamental operation in the computational engine is the barycentric combination of points.
Given points 𝑧1,…,𝑧𝑛 and associated real weights 𝑤1,…,𝑤𝑛, the barycenter is defined as

𝐺 =
∑𝑛

𝑖=1𝑤𝑖𝑧𝑖
∑𝑛

𝑖=1𝑤𝑖
.

Because points are represented as complex numbers, this operation reduces to a weighted linear combination.

The internal function barycenter_ implements this formula directly at the algebraic level. The public interface
barycenter provides a user-friendly wrapper.

The barycentric construction is used extensively throughout the package (in triangle centers, homotheties, affine
constructions, and other derived geometric algorithms).

Example.

𝐴

𝐵

𝐶

𝐺

\directlua{
init_elements()
z.A = point(1, 0)
z.B = point(5, -1)
z.C = point(2, 5)
z.G = tkz.barycenter({z.A, 3}, {z.B, 1}, {z.C, 1})
}
\begin{center}
\begin{tikzpicture}
\tkzGetNodes
\tkzDrawPolygon(A,B,C)
\tkzDrawPoints(A,B,C,G)
\tkzLabelPoints(A,B,C,G)
\end{tikzpicture}
\end{center}
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38.3. Algebraic Primitives and Geometric Operators

The computational engine relies on a minimal set of algebraic operations defined on complex numbers.
These primitives are sufficient to implement all higher-level geometric constructions such as projections, inter-
sections, membership tests, orientation checks, and affine combinations.
Because points are represented as complex numbers, vector operations reduce to elementary algebra.

38.3.1. Vector Arithmetic

Given two points represented by complex numbers, vector subtraction is defined naturally:

⃗⃗⃗⃗⃗⃗⃗𝐴𝐵= 𝑧𝐵−𝑧𝐴.

Addition and scalar multiplication follow directly from complex arithmetic.
These operations form the basis of translations, midpoints, affine combinations, and homotheties.

38.3.2. Dot Product

Given two vectors represented by complex numbers 𝑧1 =𝑎+𝑖𝑏 and 𝑧2 = 𝑐+𝑖𝑑, their scalar product is defined as

𝑧1..𝑧2 =𝑎𝑐 +𝑏𝑑.

In the implementation, this quantity is computed using the operator ..:

𝑧1..𝑧2 =𝑎𝑐 +𝑏𝑑.

Equivalently, the dot product corresponds to the real part of the product of the first vector and the conjugate
of the second:

𝑧1..𝑧2 =Re(𝑧1 𝑧2).

The dot product plays a central role in planar geometry. It is used for:

– orthogonality tests,

– projections onto a line,

– distance computations,

– angle measurements.

Distance computation. The squared distance between two points 𝐴 and 𝐵 is

𝑑(𝐴,𝐵)2 = (𝑧𝐵−𝑧𝐴)..(𝑧𝐵−𝑧𝐴).

Angle measurement. For three points 𝐴,𝐵,𝐶, the angle 𝐴𝐵𝐶 satisfies

cos(𝜃) =
(𝑧𝐴−𝑧𝐵)..(𝑧𝐶−𝑧𝐵)
‖𝑧𝐴−𝑧𝐵‖‖𝑧𝐶−𝑧𝐵‖

.

38.3.3. Determinant and Oriented Area

Given two vectors represented by complex numbers 𝑧1 =𝑎+𝑖𝑏 and 𝑧2 = 𝑐+𝑖𝑑, their determinant is defined as

det(𝑧1,𝑧2) = 𝑎𝑑 −𝑏𝑐.

This quantity represents the signed (or oriented) area of the parallelogram generated by the two vectors.
In the implementation, the determinant is computed using the operator ^:

𝑧1^𝑧2 =𝑎𝑑 −𝑏𝑐.

Given three points 𝐴,𝐵,𝐶, the oriented area of triangle 𝐴𝐵𝐶 is obtained from

tkz-elements AlterMundus



38. Computational Model and Geometric Engine 365

det(⃗⃗⃗⃗⃗⃗⃗𝐴𝐵, ⃗⃗⃗⃗⃗⃗⃗𝐴𝐶) = (𝑧𝐵−𝑧𝐴)^(𝑧𝐶−𝑧𝐴).

The sign of this quantity determines the orientation:

– positive: direct (counterclockwise),

– negative: indirect (clockwise),

– zero (up to tolerance): aligned points.

This primitive is fundamental for:

– triangle orientation,

– segment membership tests,

– line intersection,

– inside/outside classification.

38.4. Numerical Robustness and Tolerance Control

Geometric computations rely on floating-point arithmetic and are therefore subject to numerical approximation
errors.
To ensure robustness, all membership and position tests use a configurable tolerance parameter:

tkz.epsilon

This tolerance is applied systematically in:

– alignment tests,

– intersection detection,

– tangency classification,

– equality comparisons,

– geometric membership tests.

Rather than relying on strict equality, the engine evaluates whether a quantity is sufficiently close to zero.
This strategy guarantees numerical stability across complex constructions.

38.5. Geometric Classification Model

Geometric objects provide a unified classification interface based on three possible states:

"ON" "IN" "OUT"

This tri-state model applies consistently across:

– line

– circle

– triangle

– conic

Membership and region tests are therefore harmonized throughout the system.
For backward compatibility, boolean interfaces are preserved where necessary, but the internal model is uniformly
tri-state.
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38.6. Degenerate Configurations

Special care is taken to manage degenerate geometric cases:

– coincident points,

– concentric circles,

– aligned triangle vertices,

– zero-radius constructions,

– tangency limit cases.

Rather than allowing numerical instability, the engine classifies these configurations explicitly.
This design choice prevents undefined behaviors and improves the reliability of higher-level constructions.

38.7. Architecture of the Computational Engine

The engine is structured in two layers:

Primary Computational Functions

Low-level functions perform algebraic computations. They are internal and are not part of the public API.

Object-Oriented Layer

Geometric classes provide user-facing methods. These methods call primary functions while ensuring:

– consistent tolerance handling,

– type safety,

– backward compatibility.

This separation maintains clarity between computation and abstraction.

38.7.1. Internal Data Tables

In Lua, the main data structure is the table. It functions both as an array and as a dictionary, allowing you
to store sequences of values, associate keys with values, and even represent complex objects. Tables are the
foundation for representing geometric structures such as points, lines, and triangles in tkz-elements.

38.7.2. General Use of Tables

Tables are the only data structure ”container” integrated in Lua. They are associative arrays which associates a
key (reference or index) with a value in the form of a field (set) of key/value pairs. Moreover, tables have no
fixed size and can grow based on our need dynamically.
Tables are created using curly braces:

T = {} % T is an empty table.

In the next example, coords is a table containing four points written as coordinate strings. Lua indexes tables
starting at 1.

1: (0,0)
2: (1,0)
3: (1,1)
4: (0,1)

\directlua{
local coords = { "(0,0)", "(1,0)", "(1,1)", "(0,1)" }
for i, pt in ipairs(coords) do

tex.print(i .. ": " .. pt)
tex.print([[\\]])

end}
You can define a table with unordered indices as follows:
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coords = {[1] = "(0,0)", [3] = "(1,1)", [2] = "(1,0)"}

Accessing an indexed element is straightforward:

tex.print(coords[3]) --> (1,1)

You can also append new elements:

coords[4] = "(0,1)"

To iterate over a table with numeric indices in order, use ipairs:

for i, v in ipairs(coords) do
print(i, v)
end

This will print:

1 (0,0)
2 (1,0)
3 (1,1)
4 (0,1)

Key–Value Tables.
Tables may also use string keys to associate names to values. This is especially useful in geometry for storing
attributes like color or label:

properties = {
A = "blue",
B = "green",
C = "red"
}
properties.D = "black"

To iterate over all key–value pairs (order not guaranteed), use pairs:

for k, v in pairs(properties) do
print(k, v)
end

Deleting an entry.
To remove an entry, assign nil to the corresponding key:

properties.B = nil

38.7.3. Variable Number of Arguments

Tables can also be used to store a variable number of function arguments:

function ReturnTable(...)
return table.pack(...)
end
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function ParamToTable(...)
local mytab = ReturnTable(...)
for i = 1, mytab.n do
print(mytab[i])
end
end

ParamToTable("A", "B", "C")

This technique is useful for collecting points, coordinates, or any variable-length data.
Accessing with Sugar Syntax.
In tables with string keys, there are two common syntaxes:

– properties["A"] — always valid;

– properties.A — shorter, but only works with string keys that are valid Lua identifiers (not numbers).

38.7.4. Table z

The most important table in tkz-elements is z, used to store geometric points. It is declared as:

z = {}

Each point is then stored with a named key:

z.M = point(3, 2)

The object z.M holds real and imaginary parts, accessible as:

z.M.re --> 3
z.M.im --> 2

If you print it:

tex.print(tostring(z.M))

You get the complex representation 3+2i.
Moreover, points in the z table are not just data—they are objects with methods. You can perform geometric
operations directly:

z.N = z.M:rotation(math.pi / 2)

This makes the z table central to object creation and manipulation in tkz-elements.

38.8. Design Principles and Trade-offs

The design of tkz-elements follows several guiding principles:

– Mathematical coherence,

– Minimal algebraic core,

– Numerical robustness,

– Backward compatibility,

– Performance efficiency.

The choice of complex representation, tri-state classification, and tolerance-based comparisons results from
balancing mathematical rigor and practical usability.
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𝜃: Reserved variable
), 264, 377

angle: Attributes
deg, 293
norm, 293
pa, 293
pb, 293
ps, 293
raw, 293
value, 293, 294

angle: Methods
angle(ps, pa, pb), 295
deg, 294
get(), 295
is_direct(), 295

circle: Attributes
area, 88
center, 88
ct, 88
east, 88
north, 88
opp, 88
perimeter, 88
radius, 88
south, 88
through, 88
type, 88
west, 88

circle: Functions
diameter(A,B), 90
diameter(pt,pt,<'swap'> or <angle>), 91
diameter, 92
new(O,A), 90
radius(O,r), 90
through(pt,r,<angle>), 91
through, 92

circle: Methods
CCC(C2, C3[, opts]), 91
CCC_gergonne, 91, 119
CCC, 117
CCL, 91, 116
CCP(C,p[,mode]), 114
CCP(C,pt), 91
CLL, 91, 116
CLP(L,pt,<'inside'>), 91
CLP, 115
CPP(pt,pt), 91
CPP, 114
antipode(pt), 90
antipode, 100
circles_position(C1), 90
circles_position, 99
common_tangent(C), 90
commun_tangent(C), 107
diameter(pt,pt), 93
external_similitude(C), 90, 102
get(), 100
get(i), 90
in_out, 96

internal_similitude(C), 90, 102
inversion(obj), 90, 124
inversion_neg(obj), 90, 126
is_disjoint(L), 90, 94
is_secant(L), 90, 94
is_tangent(L), 90, 93
line_position(L), 96
lines_position(L), 90
lines_position(L1, L2, mode), 97
midarc(pt,pt), 90
midarc, 100
midcircle(C), 91
midcircle, 119
new, 91
orthogonal_from(pt), 91, 112
orthogonal_through(pt,pt), 112
orthogonal_through(pta,ptb), 91
path(p1, p2, N), 128
path(pt,pt,nb), 91
point(r), 90, 101
polar(), 90
polar(pt), 109
pole(L), 90, 105
position(obj), 90, 95
power(pt), 90, 94, 98
radical_axis(C), 90
radical_axis, 110
radical_center(C1, C2), 103
radical_center(C1<,C2>), 90
radical_circle(C,C), 113
radical_circle(C1<,C2>), 91
radius(pt,r), 93
random(<'inside'>), 101
random_pt(<'inside'>), 90
similitude(C,mode), 103
similitude(mode, C), 90
tangent_at(pt), 90, 106
tangent_from(pt), 90, 106
tangent_parallel(L), 90
tangent_parallel(line), 107

circle: Reserved variable
C, 88, 328

Classes
angle, 132, 293
circle, 21, 41, 64, 65, 88, 128, 185, 281, 296, 328, 361,

365
conic, 21, 39, 207, 227, 281, 296, 361, 365
fct, 352, 353, 356
line, 21, 41, 57, 64, 65, 281, 296, 305–307, 312, 313,

361, 365
list_point, 288–292
matrix, 21, 266, 324
occs, 21, 27, 41, 201
parallelogram, 21, 251
path, 21, 41, 128, 200, 227, 280, 281, 286, 287, 292, 352,

353, 356, 357
pfct, 352, 356, 357
point, 21, 41, 44, 64, 65, 307, 339, 353, 357, 361
quadrilateral, 21, 240
rectangle, 21, 247
regular polygon, 254
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regular_polygon, 21, 41, 254
square, 21, 244
triangle, 21, 39, 130, 281, 312, 361, 365
vector, 21, 258, 264

conic: Attributes
Fa, 209
Fb, 209
K, 209
Rx, 209
Ry, 209
a, 209
b, 209
covertex, 209
c, 209
directrix, 209
e, 209
major_axis, 209
minor_axis, 209
p, 209
slope, 209
subtype, 209
type, 209
vertex, 209

conic: Functions
EL_bifocal(pt,pt,pt or r), 218
EL_points(L,pt,pt), 218
EL_radii(pt, ra, rb, slope), 234
HY_bifocal(pt,pt,pt or r), 218
PA_dir(pt,pt,pt), 218
PA_focus(L,pt,pt), 218
ellipse_axes_angle(t), 218, 236
search_center_ellipse(t), 218, 237
test_ellipse(pt, t), 237
test_ellipse(pt,t), 218

conic: Methods
asymptotes(), 218, 237
get(), 218
get(i), 218
get_t_from_point(z), 228
in_out(pt), 218
in_out, 226
new (pt, L , e) , 218
orthoptic_curve(), 218
orthoptic, 226
path(pt, pt, nb, mode, dir), 227
path(pt, pt, nb, swap), 218
path, 227
point(r), 221
point(t), 218
points(ta,tb,nb,<'sawp'>), 218
points, 219
point, 224
position(pt), 218
position(pt[,EPS]), 225
tangent_at(pt), 218
tangent_at, 222
tangent_from(pt), 218
tangent_from, 223

conic: Reserved variable
CO, 207

Constants
tkz.deg, 304
tkz.invphi, 304

tkz.phi, 304
tkz.pt, 304
tkz.rad, 304
tkz.sqrtphi, 304

Engine
LuaLATEX, 326, 327
LuaLATEX, 35
lualatex, 19

EPS: Reserved variable
,, 264

fct: Functions
compile(expr), 352, 353
new(expr_or_fn), 352

fct: Methods
eval(x), 352, 353
path(xmin,xmax,n), 352, 353
point(x), 352, 353

fct: Reserved variable
F, 352

init_elements(): Functions
., 281
a, 42

latex: Environments
Bmatrix, 270
bmatrix, 270
matrix, 270
pmatrix, 270

latex: Macro
scantokens, 327

length: Reserved variable
m, 265

line: Attributes
east, 57
length, 57
mid, 57
north_pa, 57
north_pb, 57
pa, 57
pb, 57
slope, 57
south_pa, 57
south_pb, 57
type, 57
vec, 57
west, 57

line: Functions
mediator, 161

line: Methods
LLL(L, L), 60
LLL, 81
LLP, 60, 81
LPP, 60, 80
_as(d, an,<'swap'>), 77
_as(r,an<,'swap'>), 60
a_s(d,an,<'swap'>), 78
a_s(r,an<,'swap'>), 60
affinity(L, k, obj), 84
affinity_ll(L, k, pts), 60
apollonius(d), 79
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apollonius(r), 60
barycenter(ka, kb), 67
barycenter(r,r), 59
circle(), 60
collinear_at(pt,<r>), 70
collinear_at(pt,k), 59
collinear_at_distance(d), 73
distance(pt), 59, 61
equilateral(<'swap'>), 60, 74
get(), 65
get(n), 59
gold(), 78
gold(<'swap'>), 60
gold_ratio(), 59
gold_ratio, 69
golden(), 78
golden(<'swap'>), 60
golden_gnomon(), 78, 79
golden_gnomon(<'swap'>), 60
half(<'swap'>), 60, 75
harmonic(mode, arg), 69
harmonic(mode, pt), 59
harmonic_both(k), 68
harmonic_both(r), 59
harmonic_ext(pt), 59, 68
harmonic_int(pt), 59, 67, 68
in_out_segment, 200
is_equidistant(pt), 59, 64
is_orthogonal(L), 59, 64
is_parallel(L), 59, 63
isosceles(d, <'swap'>), 75
isosceles(d,<'swap'>), 60
ll_from(pt), 59, 72
mediator(), 59, 73
midpoint(), 59, 67
new(pt, pt), 59
new(pt,pt), 60
normalize(), 59, 70
normalize_inv(), 59, 70
on_line(pt), 59, 61
on_segment(pt), 59, 62
ortho_from(pt), 59, 72
orthogonal_at(), 59
orthogonal_at(pt,<r>), 71
path(n), 60, 86
point(r), 59, 67
position(obj[,EPS]), 64
position(pt), 59, 61
position_segment(pt), 59, 62, 65
projection(obj), 60, 83
projection_ll(L, obj), 83
projection_ll(L, pts), 60
pythagoras(), 78, 79
pythagoras(<'swap'>), 60
random(), 59, 72
reflection(obj), 60, 85
report(d,pt), 59
report(r,<pt>), 66
s_a(d, an, <'swap'>), 77
s_a(r,an<,'swap'>), 60
s_s(d, d), 76
s_s(r,r<,'swap'>), 60
sa_(d, an, <'swap'>), 76

sa_(r,an<,'swap'>), 60
school(<'swap'>), 60, 75
square(), 60
square(<'swap'>), 82
swap_line(), 59
swap_line, 74
translation(obj), 60, 85
two_angles(an, an), 76
two_angles(an,an), 60
where_on_line(pt), 59, 65

line: Reserved variable
L, 57

list_point: Attributes
items, 288, 289
n, 288, 289

list_point: Methods
add(p), 289, 290
barycenter(), 289, 290
bbox(), 289, 290
clear(), 289, 290
extend(pl), 289, 290
foreach(f), 289, 290
get(i), 289, 290
len(), 289
map(f), 289, 290
map, 291
new(...), 289
to_path(), 289, 291
to_path, 292
unpack(), 289, 290

list_point: Reserved variable
LP, 288, 289, 291

lua: Functions
dofile, 326
loadfile, 326
require, 326
table.getn, 334

luacode: Environments
luacode, 326

lualatex: Functions
tex.sprint, 327

lualatex: Macro
directlua, 20, 26, 27, 326, 327, 333

math: Functions
EL_bifocal, 232
EL_points(pt, pt, pt), 233
HY_bifocal, 231
PA_dir, 230
PA_focus, 231
solve_linear_system(M, N), 324

matrix: Attributes
cols, 268
det, 268
rows, 268
set, 268
type, 268

matrix: Functions
matrix.create(), 270
matrix.create(n,m), 271
matrix.htm(), 270
matrix.htm, 274
matrix.identity(), 270
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matrix.identity, 271
matrix.row_vector(), 270
matrix.row_vector, 271
matrix.square(), 270
matrix.square, 271
matrix.vector(), 270
matrix.vector, 271
new(...), 270
new, 270
print_array, 272
search_ellipse(s1, s2, s3, s4, s5), 218, 235

matrix: Metamethods
add(M1,M2), 269
eq(M1,M2), 269
mul(M1,M2), 269
pow(M,n), 269
sub(M1,M2), 269
tostring(M,n), 269
unm(M, 269

matrix: Methods
adjugate(), 270
adjugate, 273
augment_right(B), 270
diagonalize, 274
gauss_jordan(), 270, 276, 277
get(), 270
get_htm_point(), 270
get_htm_point, 275
get, 272
homogenization(), 270
homogenization, 274
htm_apply(...), 270
htm_apply, 275
inverse(), 270
inverse, 272
is_diagonal(), 270
is_diagonal, 272
is_orthogonal(), 270
is_orthogonal, 271
print(), 268
print(s,n), 270
print, 270
rank(), 270, 277
submatrix(r1,r2,c1,c2), 270
transpose(), 270
transpose, 273

matrix: Reserved variable
M, 266

misc: Functions
altitude, 312
bisector_ext, 312
bisector, 312
length, 306
tkz.length(z1, z2), 305
tkz.midpoint(z1, z2), 306

Modules
utils, 319

obj: Methods
get(), 42
new, 41

Objects
circle, 41, 88

conic, 41
line, 41, 59
occs, 41
parallelogram, 41
path, 41
point, 41, 48
quadrilateral, 41
rectangle, 41
regular_polygon, 41
square, 41
triangle, 41

occs: Attributes
abscissa, 201
ordinate, 201
origin, 201
type, 201
x, 201
y, 201

occs: Methods
coordinates(pt), 203, 204
occs(L, pt), 203
occs(dir, origin), 203

orientation: Attributes
a, 134

pa: Reserved variable
:, 293

package: Functions
init_elements(), 26, 27, 34

Packages
TikZ, 19, 20, 23, 26, 27, 32
amsmath, 266, 268, 270
fp, 22
ifthen, 35
LuaTEX, 326
luacode, 26
metapost, 359
TikZ, 339, 342
tkz-elements, 2
tkz-elements, 19, 20, 22–24, 26, 31, 32, 37, 38, 134,

268, 282, 304, 319, 323, 326, 328, 339, 343, 352,
356, 359, 361, 366, 368

tkz-euclide, 2
tkz-euclide, 19, 20, 23, 24, 26, 27, 32, 35, 37, 45, 48,

49, 194, 219, 292, 339
xfp, 22

parallelogram: Attributes
ab, 251
ac, 251
ad, 251
bc, 251
bd, 251
cd, 251
center, 251
pa, 251
pb, 251
pc, 251
pd, 251
type, 251

parallelogram: Functions
parallelogram.fourth (za,zb,zc), 253

parallelogram: Methods
fourth(pt,pt,pt), 253
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new (za, zb, zc, zd), 253
new(pt,pt,pt,pt), 253

parallelogram: Reserved variable
P, 251

path: Functions
add_pair_to_path, 320

path: Metamethods
add(path1,path2), 282
add, 282
sub(path1,path2), 282
sub, 283
tostring, 283
unm(path1), 282
unm, 282

path: Methods
add_pair(p, p, n), 285
add_pair_to_path(p, p, n), 285
add_pair_to_path(z1, z2, n), 283
add_point(pt,<n>), 283
add_point(z), 283
close(), 283, 285
concat(sep), 283, 286
concat, 286
copy(), 283, 284
count(), 283, 284
get(i), 283, 284
homothety(pt, k), 283
homothety(pt,r), 284
rotate(pt, an), 283, 285
show(), 283, 285
sub(i1, i2), 283, 285
translate(dx, dy), 283
translate(dx,dy), 284

pb: Reserved variable
:, 293

perpendicular_bisector: Methods
a, 59

pfct: Functions
compile(exprx,expry), 356, 357
new(exprx,expry), 356

pfct: Methods
path(tmin,tmax,n), 356, 357
point(t), 356, 357
x(t), 356, 357
y(t), 356, 357

pfct: Reserved variable
PF, 356

point: Attributes
argument, 45
im, 45
modulus, 45
mtx, 45, 46
re, 45
type, 45

point: Functions
arg(z), 309
polar(r, an), 49

point: Metamethods
add(z1,z2), 362
concat(z1,z2), 362
div(z1,z2), 362
eq(z1,z2), 362
mul(z1,z2), 362

pow(z1,z2), 362
sub(z1,z2), 362
tonumber(z), 362
tostring(z), 362
unm(z), 362

point: Methods
(r, r), 48
PPP(a,b), 48, 52
abs(), 362
arg(), 362
at(), 48
at(pt), 52
conj(), 362
east(r), 48
get(), 48, 49, 362
homothety(k, obj), 55
homothety(r,obj), 48
identity(pt), 48
identity, 54
mod(), 362
new(r, r), 48
new(r,r), 48
norm(), 362
normalize(), 48, 51
normalize_from(pt), 48
north(d), 50
north(r), 48
orthogonal(d), 48, 51
polar(d,an), 48
polar_deg(d,an), 48, 50
print(), 48
rotation(an, obj), 48, 54
rotation(obj), 52
shift_collinear_to(pt, d), 48
shift_collinear_to(pt, dist), 53
shift_orthogonal_to(pt, d), 48
shift_orthogonal_to(pt, dist), 53
south(r), 48
sqrt(), 362
symmetry(obj), 48, 55
west(r), 48

point: Reserved variable
z, 44, 45

ps: Reserved variable
:, 293

quadrilateral: Attributes
ab, 240
ac, 240
ad, 240
a, 240
bc, 240
bd, 240
b, 240
cd, 240
center, 240
c, 240
d, 240
g, 240
pa, 240
pb, 240
pc, 240
pd, 240
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type, 240
quadrilateral: Methods

is_convex (), 242
is_convex(), 242
is_cyclic (), 242
is_cyclic(), 242
new(), 242
poncelet_point(), 242
poncelet_point, 242

quadrilateral: Reserved variable
Q, 240

rectangle: Attributes
ab, 247
ac, 247
ad, 247
bc, 247
bd, 247
cd, 247
center, 247
diagonal, 247
length, 247
pa, 247
pb, 247
pc, 247
pd, 247
type, 247
width, 247

rectangle: Methods
angle (zi, za, angle), 248
angle(pt,pt,an), 248
diagonal (za, zc), 248
diagonal(pt,pt), 249
get_lengths (), 248
get_lengths, 250
gold (za, zb), 248
gold(pt,pt), 250
new(pt,pt,pt,pt), 248
new(za ,zb, zc, zd), 248
side (za, zb, d), 248
side(pt,pt,d), 249

regular_polygon: Functions
new(O,A,n), 255

regular_polygon: Methods
incircle (), 255
name (string), 255

regular_polygon: Reserved variable
P, 254
RP, 254

regular: Attributes
angle, 254
apothem, 254
center, 254
circle, 254
circumradius, 254
inradius, 254
side, 254
through, 254
type, 254
vertices, 254

regular: Methods
incirle(), 255
name(s), 256

new(pt, pt, n), 255

side: Reserved variable
m, 265

square: Attributes
ab, 244
ac, 244
ad, 244
apothem_foot, 244
bc, 244
bd, 244
cd, 244
center, 244
circumradius, 244
inradius, 244
pa, 244
pb, 244
pc, 244
pd, 244
side, 244
type, 244

square: Functions
square.by_rotation (zi,za), 246
square.by_rotation(pt,pt), 246
square.from_side(za,zb), 246
square.from_side(za,zb,swap), 246

square: Methods
new(za,zb,zc,zd), 246

square: Reserved variable
S, 244

TikZ: Macro
foreach, 207

tikz: Environments
tikzpicture, 20, 27, 30, 36

tkz-elements: Environments
tkzelements, 26, 27, 326

tkz-elements: Functions
init_elements(), 20, 21, 42, 57, 88, 240, 254, 281, 288,

289, 352, 356
init_elements, 42
intersection(X, Y, opts), 296
intersection, 296
reset_defaults(), 304

tkz-elements: Macro
tkzDrawCirclesFromPaths(…), 343
tkzDrawCirclesFromPaths, 347
tkzDrawCoordinates(…), 343
tkzDrawCoordinates, 208, 219, 345
tkzDrawFromPointToPath, 349
tkzDrawPath[<tikz-options>](lua-path), 345
tkzDrawPointOnGraph, 350, 354
tkzDrawPointOnParamGraph, 350, 357
tkzDrawPointsFromPath(…), 343
tkzDrawPointsFromPath, 345
tkzDrawPointsOnGraph, 350, 354
tkzDrawPointsOnParamGraph, 350, 357, 358
tkzDrawSegmentsFromPaths(…), 343
tkzDrawSegmentsFromPaths, 346
tkzEraseLuaObj{<name>}, 344
tkzEraseLuaObj{name}, 343
tkzEraseLuaObj, 344
tkzGetNodesMP, 20, 359
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tkzGetNodes, 20, 21, 24, 27
tkzGetPointFromPath, 346
tkzGetPointsFromPath{P}{A}, 343
tkzGetPointsFromPath, 346
tkzPN{<lua-expression>}, 344
tkzPN, 344
tkzPathCount, 344
tkzPrintNumber{...}, 343
tkzPrintNumber{<lua-expression>}, 344
tkzPrintNumber, 344
tkzUseLua{...}, 343
tkzUseLua, 21, 343

tkz-euclide: Methods
tkzDrawPointsFromPath, 292

tkz-euclide: options
mini, 35

tkz.epsilon: Reserved variable
., 264

tkz: Functions
midpoints, 306
midpoint, 306
parabola(pt, pt, pt), 204
parabola, 315
solve(...), 323
tkz.altitude(z1, z2, z3), 305
tkz.angle_between_vectors(a, b, c, d), 314
tkz.angle_between_vectors, 305, 311
tkz.angle_normalize(an) , 305
tkz.angle_normalize(an), 309
tkz.angle_normalize, 309, 310
tkz.barycenter ({z1,n1},{z2,n2}, ...), 305
tkz.barycenter, 307
tkz.bisector(z1, z2, z3), 305, 306
tkz.bisector_ext(z1, z2, z3), 305, 306
tkz.derivative(f, x0 [, accuracy]), 305
tkz.derivative, 317
tkz.dot_product(z1, z2, z3), 305, 311
tkz.fsolve(f, a, b, n [, opts]), 305
tkz.fsolve, 316
tkz.get_angle(pa, pb, pc), 308
tkz.get_angle(z1, z2, z3), 305
tkz.get_angle_normalize, 305, 310
tkz.get_angle, 308, 310
tkz.inner_angle(pa, pb, pc), 308
tkz.inner_angle(z1, z2, z3), 305
tkz.is_direct, 310
tkz.is_linear(z1, z2, z3) , 305
tkz.is_linear(z1, z2, z3), 312, 313
tkz.is_linear, 312, 313
tkz.is_ortho(z1, z2, z3), 305, 312
tkz.is_ortho, 312
tkz.length(z1, z2) , 305
tkz.midpoint(z1, z2), 305
tkz.midpoints(z1, z2, ..., zn), 305
tkz.nodes_from_paths, 305, 315
tkz.parabola(pta, ptb, ptc), 305, 315
tkz.range, 317
tkz.reset_defaults(), 304
tkz.round(num, idp), 314
tkz.set_nb_dec(n), 304
tkz.solve(...), 323
tkz.solve_linear_system, 323

tkz: Reserved variable

tkz.epsilon, 39, 54, 95, 97, 98
\tkzGetNodes, 32, 341
\tkzUseLua, 339, 340
triangle: Attributes

ab, 131
alpha_, 131
alpha, 131
area, 131
a, 131
bc, 131
beta_, 131
beta, 131
b, 131
ca, 131
centroid, 131
circumcenter, 131
circumradius, 131
cross, 131
c, 131
eulercenter, 131
gamma_, 131
gamma, 131
incenter, 131
inradius, 131
orientation, 131
orthocenter, 131
pa, 131
pb, 131
pc, 131
semiperimeter, 131
spiekercenter, 131
type, 131

triangle: Functions
altitude, 161
bisector, 161

triangle: Methods
Nagel_point, 150
adams_circle(), 138, 174
adams_points(), 155
altitude(arg) , 137
altitude(arg), 159
altitude, 159
anti() , 138
anti(), 192
antiparallel(arg), 161
antiparallel(pt,n), 137
apollonius_circle(side, EPS), 138, 184
apollonius_point(), 136, 158
apollonius_points(side), 157
barycentric(ka, kb, kc), 144
barycentric(ka,kb,kc), 136
barycentric_coordinates(pt), 136, 141
base(u,v), 136
base, 145
bevan_circle(), 138, 173
bevan_point(), 136, 147
bisector(arg) , 137
bisector(arg), 159
bisector_ext(arg) , 137
bisector_ext(arg), 160
bisector, 159, 160
brocard_axis(), 137, 165
brocard_inellipse(), 138

tkz-elements AlterMundus



INDEX 376

brocard_inellipse, 197
c_c(pt), 138
c_c, 178
cevian(), 189
cevian(pt), 138
cevian_circle(), 138
cevian_circle(pt), 170
cevian_circle, 170
check_acutangle(), 136, 141
check_equilateral(), 136, 140
circum_circle(), 138, 167
circumcevian(), 138
circumcevian(pt), 191
contact() , 138
contact, 150
conway_circle(), 138, 171
conway_points(), 136, 153, 171
euler(), 138, 190
euler_circle(), 138, 167
euler_ellipse(), 138, 195
euler_line() , 137
euler_line(), 162
euler_points(), 136
euler_points, 152
ex_circle(arg), 169
ex_circle(n), 138
excenter, 148
excentral(), 138, 187
extouch(), 138, 188
fermat_axis(), 137
fermat_axis, 165
feuerbach(), 188
feuerbach_apollonius(side, EPS), 138
feuerbach_apollonius_k181(side, EPS), 138
feuerbach_apollonius_k181, 185
feuerbach_apollonius, 185
feuerbach_point(), 136, 151
first_fermat_point(), 136, 154
first_lemoine_circle(), 138, 172
gergonne_point(), 136, 150
get(<i>), 139
get(arg), 136
get_angle(arg), 136, 141
in_circle(), 138, 168
in_out(pt), 136, 140
incentral(), 138, 186
incentral, 160
intouch() , 138
intouch(), 187
intouch, 150
isodynamic_points(), 136, 156, 182
isogonal(p), 136
isogonal(pt), 146
kenmotu_circle(), 138, 177
kenmotu_point(), 136, 154
kiepert_hyperbola(), 138, 194
kiepert_parabola(), 138
kiepert_parabola, 194
kimberling(n), 136, 145
lamoen_circle(), 138
lamoen_circle, 175
lamoen_points(), 136
lemoine(), 138, 193

lemoine_axis(), 137, 164, 165
lemoine_ellipse(), 138
lemoine_inellipse, 197
lemoine_point(), 136
macbeath(), 138, 193
macbeath_inellipse(), 138
macbeath_inellipse, 198
macbeath_point()(p), 136
macbeath_point, 155
mandart_ellipse(), 138
mandart_inellipse, 198
medial(), 138, 186, 306
medial, 131
mediator(...), 160
mediator(arg), 137
mittenpunkt_point(), 136
mittenpunkt, 149
mixtilinear_incircle(arg), 138, 180
nagel_point(), 136
new(pt, pt, pt), 139
new, 130, 136
nine_points(), 136
nine_points, 152
on_triangle(pt), 136, 140
orthic(), 138, 186
orthic_axis(), 137, 162, 163
orthic_axis_points(), 136, 162, 163
orthic_inellipse(), 138
orthic_inellipse, 199
orthic, 159
orthopole(L), 136
orthopole, 155
parallelogram(), 136, 149
path(), 200
pedal(), 172
pedal(pt), 138
pedal_circle(), 138, 172
point(r), 136, 143
poncelet_point(p), 136
poncelet_point, 155
position(pt, EPS), 136
position(pt[, EPS]), 140
projection(p), 136
projection, 148
random(<'inside'>), 136, 143
reflection(), 138, 191
second_fermat_point(), 136, 154
second_lemoine_circle(), 138, 173
simson_line(pt), 137, 165, 166
soddy_center(), 136
soddy_center, 153
soddy_circle(), 138, 176
spieker_center(), 136
spieker_center, 152
spieker_circle(), 138, 170
square_inscribed(), 138
square_inscribed(n), 199
steiner_circumellipse(), 138, 196
steiner_inellipse(), 138, 196
steiner_line(pt), 137, 163
symmedial(), 138
symmedial_circle(), 138, 171
symmedian(), 189
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symmedian_line(arg), 137
symmedian_line(n), 158
symmedian_line, 159
symmedian_point(), 136, 151
tangential(), 138, 192
taylor_circle(), 138, 174
taylor_points(), 136
thebault(pt), 138
thebault, 178
three_apollonius_circles(), 138, 182
three_tangent_circles, 138, 181
trilinear(u,v,w), 136
trilinear(x, y, z), 144
trilinear_coordinates(pt), 136, 141
trilinear_to_d, 136, 142
yiu(), 190
yiu_circles(), 176

triangle: Reserved variable
T, 130

\usepackage{tkz-euclide} , 35
utils: Functions

almost_equal(a, b, epsilon), 321
checknumber(x, decimals), 321
format_coord(x, decimals), 320
format_coord, 321
format_number(x, decimals), 314, 319, 320
format_number, 320, 321
format_point(z, decimals), 319–321
parse_point(str), 319
table_getn, 334
to_decimal_string(x, decimals), 320
utils.almost_equal(a, b, eps), 319
utils.checknumber(x, decimals), 319
utils.format_coord(x, decimals), 319
utils.format_number(r, n), 319
utils.format_point(z, decimals), 319
utils.parse_point(str), 319
utils.wlog(...), 319
wlog(...), 322

Variables system
tkz.dc, 304
tkz.epsilon, 304
tkz.nb_dec, 304

vector: Attributes
dx, 258, 259
dy, 258, 259
head, 258
mtx, 258, 259

norm, 258, 259
slope, 258, 259
tail, 258
type, 258, 259
z, 258, 260

vector: Metamethods
add(u,v), 261
concat(k,u), 261
mul(k,u), 261
pow(k,u), 261
sub(u,v), 261
tostring(path1), 282
unm(u), 261

vector: Methods
.., 263
^, 263
add(v), 264
add, 261
angle_to(v), 264
at (pt), 264
at(), 265
cross(v), 264
dot(v), 264
get(), 264
is_orthogonal(v,[EPS]), 264
is_orthogonal, 264
is_parallel(v,[EPS]), 264
is_parallel, 264
is_zero([EPS]), 264
is_zero, 264
mul, 262
new(pt, pt), 264
normalize(), 264
orthogonal([side],[length]), 264, 265
orthogonal, 265
rotate(), 264
scale(d), 264
sub, 262
unm, 262

vector: Reserved variable
V, 258

z: Reserved variable
., 316
s, 316

za: Reserved variable
a, 258

zb: Reserved variable
,, 258
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