The pdfTEX user manual

Han Thé Thanh and others

pdfTEX 1.40.29

February 16, 2026

https://pdftex.org

https://pdftex.org

Contents

1 Introduction
1.1 About thismanual
1.2 Legal notice
1.3 About PDF
2 Invoking pdfTEX
2.1 Macro packages supporting pdfTEX oo
3 Setting up fonts
3.1 Mapfiles. e
3.1.1 Map lines: tfmname
3.1.2 Map lines: psnameo
3.1.3 Map lines: fontflags
3.1.4 Map lines: special
3.1.5 Map lines: encodingfile L
3.1.6 Map lines: fontfile
3.1.7 Map lines: summary
3.2 Helper tools for TrueType fonts: ttf2afm
4 pdfTEX primitives
4.1 Document setup
4.1.1 \pdfoutput
4.1.2 \pdfmajorversion, \pdfminorversion
4.1.3 \pdfcompresslevel
4.1.4 \pdfobjcompresslevel
4.1.5 \pdfdecimaldigits
4.1.6 \pdfhorigin
4.1.7 \pdfvorigin L
4.1.8 \pdfpagewidth
4.1.9 \pdfpageheight i
4.2 Document info and catalog L
4.2.1 \pdfomitinfodict
4.22 \pdfinfo
4.2.3 \pdfinfoomitdate
4.2.4 \pdfsuppressptexinfo o
4.2.5 \pdfcatalog
4.2.6 \pdfcreationdate
427 \pdfnames
4.2.8 \pdftrailer

13
15

17
17
17
18
18
19
19
19
20
21

4.3

4.4

4.5

4.6

4.2.9 \pdftrailerid 28

4.2.10 \pdfuseptexunderscore 28
Fonts o e 29
4.3.1 \pdfadjustspacing 29
4.3.2 \pdffontexpand 29
4.3.3 N\efcode 30
4.3.4 \pdfprotrudechars 30
4.3.5 \rpcode, \Ipcode 31
4.3.6 \leftmarginkern, \rightmarginkern 31
4.3.7 \letterspacefont 32
4.3.8 \pdfcopyfont 32
4.3.9 \pdffakespace 32
4.3.10 \pdffontattr. 32
4.3.11 \pdffontname 32
4.3.12 \pdffontobjnum 33
4.3.13 \pdffontsize 33
4.3.14 \pdfgentounicode 33
4.3.15 \pdfglyphtounicode 33
4.3.16 \pdfincludechars e 34
4.3.17 \pdfinterwordspaceon, \pdfinterwordspaceoff, \pdfspacefont 34
4.3.18 \pdfmapfile 35
4.3.19 \pdfmapline 36
4.3.20 \pdfmovechars 37
4.3.21 \pdfnobuiltintounicode 37
4.3.22 \pdfnoligatures 37
4.3.23 \pdfomitcharset 37
4.3.24 \pdfpkmode 37
4.3.25 \pdfpkresolution 37
4.3.26 \pdfsuppresswarningdupmap 38
4.3.27 \pdftracingfonts 38
4.3.28 \pdfuniqueresnameo e 38
4.3.29 \tagcode 38
SPacing 38
4.4.1 \pdfadjustinterwordglue 39
442 N\knbscode 39
4.4.3 \stbscode. 39
4.4.4 \shbscode 39
4.4.5 \pdfprependkern 39
4.4.6 \knbccode 39
4.4.7 N\pdfappendkern 39
4.4.8 \knaccode 39
Vertical adjustments 40
4.5.1 \pdfignoreddimen 40
4.5.2 \pdffirstlineheight, \pdflastlinedepth 40
4.5.3 \pdfeachlineheight, \pdfeachlinedepth 40
PDF objects 40
4.6.1 \pdfobj 40
4.6.2 \pdflastobj 40
4.6.3 \pdfrefobj 41

4.7

4.8

4.9

4.10

4.11

4.12

4.13

4.6.4 \pdfretval 41

Page and pages objects e 41
4.7.1 \pdfpagesattr 41
4.7.2 \pdfpageattr 41
4.7.3 \pdfomitprocset 41
4.7.4 \pdfpageref L 42
4.7.5 \pdfpageresources 42
Form XObjects e 42
4.8.1 \pdfxform. L 42
4.8.2 \pdfrefxform. 42
4.8.3 \pdflastxform 43
4.8.4 \pdfxformname 43
Graphics inclusiono 43
4.9.1 \pdfximage 43
4.9.2 \pdfrefximage 45
4.9.3 \pdflastximage o o i e 45
4.9.4 \pdfximagebbox 45
4.9.5 \pdflastximagecolordepth. 45
4.9.6 \pdflastximagepages o it 45
4.9.7 \pdfimageresolution Lo 45
4.9.8 \pdfpagebox 46
4.9.9 \pdfforcepagebox e 46
4.9.10 \pdfinclusionerrorlevel 46
4.9.11 \pdfimagehicolor 46
4.9.12 \pdfimageapplygammat 46
4.9.13 \pdfgamma 47
4.9.14 \pdfimagegammao 47
4.9.15 \pdfpxdimen 47
4.9.16 \pdfinclusioncopyfonts L. 48
4.9.17 \pdfsuppresswarningpagegroupo i e e 48
Annotations L 48
4.10.1 \pdfannot 48
4.10.2 \pdflastannot 49
Destinations and linkso Lo 49
4.11.1 \pdfdest 49
4.11.2 \pdfstartlink 50
4.11.3 \pdfendlink 52
4.11.4 \pdflastlink L e 52
4.11.5 \pdflinkmargin 52
4.11.6 \pdfdestmargin 52
4.11.7 \pdfsuppresswarningdupdest 52
4.11.8 \pdfrunninglinkon, \pdfrunninglinkoff 92
Bookmarks 53
4.12.1 \pdfoutline 53
Article threads L 53
4.13.1 \pdfthread 53
4.13.2 \pdfstartthread 53
4.13.3 \pdfendthread 53
4.13.4 \pdfthreadmargin e 54

4.14

4.15

4.16

4.17

4.18

4.19

4.20

4.21

4.22

Literals and specials e 54

4.14.1 \pdfliteral 54
4.14.2 \special 54
4.14.3 \special direct 54
4.14.4 \special page e 54
4.14.5 \special shipout 54
Strings 55
4.15.1 \pdfescapestring e 55
4.15.2 \pdfescapename 55
4.15.3 \pdfescapehex 55
4.15.4 \pdfunescapehex 55
4.15.5 \pdfstrcmp 55
4.15.6 \pdfmatch. 55
4.15.7 \pdflastmatch 56
Numbers L 56
4.16.1 \ifpdfabsnum, \ifpdfabsdim 56
4.16.2 \pdfnormaldeviate 56
4.16.3 \pdfuniformdeviateo 56
4.16.4 \pdfrandomseed e 56
4.16.5 \pdfsetrandomseed o 57
Timekeeping L 57
4.17.1 \pdfelapsedtime o7
4.17.2 \pdfresettimer 57
Files o o e o7
4.18.1 \pdffiledump o7
4.18.2 \pdffilesize e 57
4.18.3 \pdfmdfivesum file. L L 57
4.18.4 \pdffilemoddate 58
4185 \input 58
Color stack 58
4.19.1 \pdfcolorstackinito 58
4.19.2 \pdfcolorstack i 58
Transformations L L 59
4.20.1 \pdfsetmatrix 59
4.20.2 \pdfsave 59
4.20.3 \pdfrestore 59
Macro programmingo ... e e e 59
4.21.1 \expanded 59
4.21.2 \ifincsname Lo 60
4.21.3 \ifpdfprimitive 60
4.21.4 \ignoreprimitiveerror 60
4.21.5 \partokencontext L 60
4.21.6 \partokennameo 61
4.21.7 \pdfprimitive 62
Typesetting oL 62
4.22.1 \pdfinsertht 62
4.22.2 \pdflastxpos, \pdflastypos 62
4.22.3 \pdfsavepos 62
4.22.4 \quitvmode L e 62

4.22.5 \vadjust

4.23 Tracing
4.23.1 \showstream o v v i e e e e e e
4.23.2 \tracinglostchars i
4.23.3 \tracingstacklevelso

4.24 pdfTEX execution environment
4.24.1 \pdfdraftmode
4.24.2 \pdfshellescape v v v it e
4.24.3 \pdftexbanner
4.24.4 \pdftexrevision.
4.24.5 \pdftexversion

Graphics

5.1 PDF graphics

5.2 PNG graphics e e

5.3 JPEG graphics e

5.4 JBIG2 graphics e

5.5 MetaPost graphics

5.6 TEX package graphics: picture mode, Xy-pic, tpic L.

5.7 PostScript graphics: Not supported, but convertable

Additional PDF keys: PTEX.*
Character translation: TCX

Installation

A.1 Getting sources and binarieso
A2 Compiling
A3 Placing files
A4 Configuration of pdfTEX o
A5 Creating format files
A.6 Testing the installation
A.7 Common problems

Formal syntax specification

B.1 Integer registers L
B.2 Read-only integers
B.3 Dimen registers
B.4 Token registers e
B.5 Expandable commands Lo
B.6 General commands
B.7 General definitions and syntax rules oL

C Abbreviations used in this manual

GNU Free Documentation License (v1.2)

1. APPLICABILITY AND DEFINITIONS
2. VERBATIM COPYING
3. COPYING IN QUANTITY s
4. MODIFICATIONS e

66
66
66
67
67
67
67
68

69

70

71
71
71
72
72
74
75
75

76
76
7
78
78
78
79
80

82

5. COMBINING DOCUMENTS e 87
6. COLLECTIONS OF DOCUMENTS e 87
7. AGGREGATION WITH INDEPENDENT WORKS 87
8. TRANSLATION o e 87
9. TERMINATION e e 88
10. FUTURE REVISIONS OF THISLICENSE 88
ADDENDUM: How to use this License for your documents 88

Chapter 1

Introduction

The main purpose of the pdfTEX project is to create and maintain an extension of TEX that
can produce PDF output directly from TEX source files and improve/enhance the result of TEX
typesetting with the help of PDF output. When PDF output is not selected, pdfTEX produces
standard DVI output. An important aspect of the project is to investigate alternative justification
algorithms; notably, the margin kerning and font expansion algorithms following the HZ micro-
typography algorithm by Prof. Hermann Zapf.

pdfTEX is maintained by Han Thé Thanh, the original author, and others. The pdfTiEX home
page is https://www.pdftex.org. Please send bug reports, suggestions, etc., to the mailing list
(https://lists.tug.org/pdftex).

pdfTEX is based on the original TEX sources and Web2C, and has been successfully compiled on
Unix, Windows and many other systems. It is actively maintained, with great care taken to keep
new pdfTEX versions backward-compatible with earlier ones.

A conservative successor to TEX, named e-TEX, was developed in the 1990s. Since pdfTEX
version 1.40, the e-TEX extensions are compiled as part of the pdfTEX engine and thus always
available. For documentation on the e-TEX extensions, see https://ctan.org/pkg/etex.

Furthermore, pdfTEX itself has acquired plenty of extensions over the years which are not related
specifically to PDF output, generally new primitives for various features that are inconvenient or
impossible to implement at the TEX level. Many of these extensions have been adopted across all
engines (sometimes with different primitive names or variant functionality), and some are required
by IXTEX. Therefore, in most distributions etex is a link to pdftex; the difference being whether
DVI or PDF output is generated by default.

Other extensions are ml'TEX and encTEX; these are also included in the pdfTEX implementation,
although they are rarely used for new documents.

pdfTEX does not natively support UTF-8 input text, Unicode-encoded fonts, or anything else
related to Unicode, as it was written long before Unicode became widespread. Making those changes
to the engine now would necessarily create unacceptable incompatibilities, so there are no plans to
do so. Thus, when using pdfTEX, BTEX and other formats handle UTF-8 (and other) input at the
TEX macro level, which works well enough in practice for most documents. It is also possible to use
TrueType and OpenType fonts with pdfTEX, if you choose an 8-bit subset to be encoded.

If you need a TEX engine with native support for Unicode input, TrueType fonts, Open-
Type fonts, please look into LuaTgX (https://ctan.org/pkg/luatex) or XeTEX (https://tug.
org/xetex).

https://www.pdftex.org
https://lists.tug.org/pdftex
https://ctan.org/pkg/etex
https://ctan.org/pkg/luatex
https://tug.org/xetex
https://tug.org/xetex

1.1 About this manual

This manual revision (979) covers pdfTEX development up to version 1.40.29. The primary repos-
itory for both the manual and the pdfTEX sources is svn://tug.org/pdftex/branches/stable.
The typeset manual in PDF format can be found on CTAN in https://ctan.org/pkg/pdftex.

Thanks to the many people who have contributed to the manual. Improvements are always
possible, and bugs not unlikely. Please send questions or suggestions via email at https://lists.
tug.org/pdftex.

1.2 Legal notice

Copyright (©) 19962025 Han Thé Thanh. Permission is granted to copy, distribute and/or modify
this document under the terms of the GNU Free Documentation License, Version 1.2 or any later
version published by the Free Software Foundation; with no Invariant Sections, no Front-Cover
Texts, and no Back-Cover Texts. A copy of the license is included in the section entitled “GNU Free
Documentation License”.

1.3 About PDF

Let’s start with a very brief introduction to PDF format. For our example, the bit of TEX source
below (figure 1.1) generates the nearly-minimal PDF file shown on the next page (figure 1.2). Since
compression is disabled, such a PDF file is rather verbose and readable. The first line (%PDF-1.4)
specifies the PDF version used. PDF viewers are supposed to silently skip over all elements they
cannot handle.

A PDF file consists of objects. These objects can be recognized by their number and keywords.
For example, over in the second column, we can see (modulo editorial line breaks):

9 0 obj << /Type /Catalog /Pages 5 0 R >> endobj

Here 9 0 obj ... endobj is the object capsule. The first number is the object number (no. 9).
The sequence 5 0 R is an object reference, that is, a pointer to another object (no. 5). The second
number (here a zero) is currently not used in pdfTEX; it is the version number of the object. It is,
for instance, used by PDF editors, when they replace objects by new ones.

When a viewer opens a PDF file, it goes to the end of the file, looking for the keyword startxref.
The number after startxref gives the absolute position (byte offset from the file start) of the so-
called “object cross-reference table” that begins with the keyword xref. This table in turn tells the
byte offsets of all objects that make up the PDF file, providing fast random access to the individual

\pdfoutput=1

\pdfcompresslevel=0
\pdfobjcompresslevel=0

\pdfmapline{ptmr8r Times-Roman 2 <8r.enc}
\font\tenrm=ptmr8r

\tenrm

Welcome to pdf\TeX!

\end

Figure 1.1: This plain TEX source generates PDF output shown in figure 1.2.

svn://tug.org/pdftex/branches/stable
https://ctan.org/pkg/pdftex
https://lists.tug.org/pdftex
https://lists.tug.org/pdftex

%PDF-1.4

%

3 0 obj

<<

/Length 334

>>

stream

BT

/F1 9.9626 Tf 72 713.245 Td [(W)ITJ 8.60
0 Td [(e)]TJ 4.423 0 Td [(1)ITJ 2.77 O T
[(c)]ITJ 4.423 0 Td [(0)ITJ 4.981 0 Td
[(m)]TJ 7.751 0 Td [(e)]TJ 6.914 0 Td

[(£)ITJ 2.77 0 Td [(0)]TJ 7.472 0 Td [(p)]TJ

4.981 0 Td [(d)]TJ 4.981 0 Td [(£)]ITJ 3.
0 Td [(T)ITJ 4.426 -2.241 Td [(E)]TJ 4.8
2.241 Td [(X)]TJ 7.193 0 Td [(1)]TJ

ET

endstream

endobj

2 0 obj

<<

/Type /Page

/Contents 3 O R

/Resources 1 0 R

/MediaBox [0 0 612 792]

/Parent 5 0 R

>>

endobj

1 0 obj

<<

/Font << /F1 4 0 R >>

/ProcSet [/PDF /Text 1]

>>

endobj

7 0 obj

[333 408 500 500 833 778 333 333 333 500
564
250
500
667
889
722
444 500
500 500
endobj
8 0 obj
<<
/Type /FontDescriptor

/FontName /Times-Roman

/Flags 2

/FontBBox [0 -216 1000 678]

/Ascent 678

/CapHeight 651

/Descent -216

/ItalicAngle O

/StemV 83

/XHeight 450

>>

endobj

6 0 obj

<<

/Type /Encoding

/Differences [33/exclam 69/E 84/T 87/W/X

333
500
667
722
722

250
500
722
722
611
444
500

278
278
611
556
333
333
500

500
278
556
722
278
500
333

500
564
722
667
333
500
389

500
564
722
556
469
278
278]

500 500 500
564 444 921
333 389 722
611 722 722
500 333 444
278 500 278

8
d

318
42

500
722
611
944
500
778

99/c/d/e/f 108/1/m 111/0/p 116/t]
>>

endobj

4 0 obj

<<

/Type /Font

/Subtype /Typel

/BaseFont /Times-Roman
/FontDescriptor 8 0 R
/FirstChar 33

/LastChar 116

/Widths 7 O R

/Encoding 6 O R

>>

endobj

5 0 obj

<<

/Type /Pages

/Count 1

/Kids [2 0 RI]

>>

endobj

9 0 obj

<<

/Type /Catalog

/Pages 5 0 R

>>

endobj

10 0 obj

<<

/Producer (pdfTeX-1.40.29)
/Creator (TeX)
/CreationDate (D:20260119143458-08'00")
/ModDate (D:20260119143458-08'00"')
/Trapped /False

/PTEX.Fullbanner (This is pdfTeX, Version

3.141592653-2.6-1.40.29 (TeX Live 2026)
kpathsea version 6.4.2)

>>

endobj

xref

0 11
0000000000
0000000511
0000000407
0000000015
0000001225
0000001377
0000001113
0000000578
0000000931
0000001434
0000001483
trailer

<< /Size 11
/Root 9 O R
/Info 10 O R

/ID [<92180468990E5BCB5BC592DDCBA25820>
<92180468990E5BCB5BC592DDCBA25820>] >>
startxref

1744

hHEOF

65535
00000
00000
00000
00000
00000
00000
00000
00000
00000
00000

BBBBBBBBBB M

Figure 1.2: The PDF output for the TEX source in figure 1.1.

10

objects (here the xref table shows 11 objects, numbered from 0 to 10; object no. 0 is always unused).
The actual starting point of the file’s object structure is defined after the trailer: the /Root entry
points to the /Catalog object (no. 9). In this object the viewer can find the pointer /Pages to the
page list object (no. 5). In our example we have only one page. The trailer also usually holds an
/Info entry, which points to an object (no. 10) with a bit more about the document. We can follow
the thread:

/Root — object 9 — /Pages — object 5 — /Kids — object 2 — /Contents
— object 3

As soon as we add annotations, a fancy word for hyperlinks and the like, some more entries will
be present in the catalog. We invite users to take a look at the PDF code of this file to get an
impression of that.

The page content is a stream of drawing operations. Such a stream can be compressed, where
the level of compression can be set with \pdfcompresslevel (compression is switched off for the
title page). Let’s take a closer look at this stream in object 3. Often (but not in our example) there
is a transformation matrix, six numbers followed by cm. As in PostScript, the operator comes after
the operands. Between BT and ET comes the text. A font is selected by a Tf operator, which is given
a font resource name /F.. and the font size. The actual text goes into parentheses () so that it
creates a PostScript string. The numbers in bracket pairs provide horizontal movements like spaces
and fine glyph positioning (kerning). When one analyzes a file produced by a less sophisticated
typesetting engine, whole sequences of words can be recognized. In PDF files generated by pdfTEX
however, many words come out rather fragmented, mainly because a lot of kerning takes place; in
our example the 80 moves the text (elcome) left towards the letter (W) by 80/1000 of the font size.
PDF viewers in search mode simply ignore the kerning information in these text streams. When a
document is searched, the search engine reconstructs the text from these (string) snippets.

Every /Page object points also to a /Resources object (no. 1) that gives all ingredients needed
to assemble the page. In our example only a /Font object (no. 4) is referenced, which in turn tells
that the text is typeset in /Font /Times-Roman. The /Font object points also to a /Widths array
(object no. 7) that tells for each character by how much the viewer must move forward horizontally
after typesetting a glyph.

More details about the font can be found in the /FontDescriptor object (no. 8); if a font file
is embedded, this object points to the font program stream. But as the Times-Roman font used
for our example is one of the 14 so-called standard fonts that should always be present in any PDF
viewer and therefore need not be embedded in the PDF file, it is left out here for brevity. However,
when we use for instance a Computer Modern Roman font, we have to make sure that this font is
later available to the PDF viewer, and the best way to do this is to embed the font. It’s highly
recommended nowadays to embed even the standard fonts; you can’t know how it looks exactly at
the viewer side unless you embed every font.

In this simple file we don’t specify in what way the file should be opened, for instance full screen
or clipped. A closer look at the page object no. 2 (/Type/Page) shows that a mediabox (/MediaBox)
is part of the page description. A mediabox acts like the (high-resolution) bounding box in a
PostScript file. pdfTEX users can add dictionary entries to page objects with the \pdfpageattr
primitive.

Although in most cases macro packages will shield users from these internals, pdfTEX provides
access to many of the entries described here, either automatically by translating the TEX data
structures into PDF ones, or manually by pushing entries to the catalog, page, info or self-created
objects. One can for instance create an object by using \pdfobj, after which \pdflastobj returns
its number. So

11

\pdfobj { << /Type/ExtGState /LW 2 >> }

inserts an object into the PDF file (it creates a “graphics state” object setting the line width to
2 units), and \pdflastobj now returns the number pdfTEX assigned to this object. Unless objects
are referenced by others, they will just end up as isolated entities, not doing any real harm but
bloating the PDF file.

In general this rather direct way of pushing objects in the PDF files by primitives like \pdfobj
is not very useful, and only makes sense when implementing, say, fill-in field support or annotation
content reuse. We will come to that later.

Of course, this is just the barest introduction to PDF format. For those who want to learn
more about technical PDF details, the best bet is to read the PDF reference manual (https:
//pdfa.org/resource/pdf-specification-index/).

We turn now to the specifics of pdfTEX.

12

https://pdfa.org/resource/pdf-specification-index/
https://pdfa.org/resource/pdf-specification-index/

Chapter 2

Invoking pdfTEX

pdfTEX has many command line options and can use many environment variables and configuration
file settings. Except for the simple and rarely-used -draftmode and -output-format options,
they are all inherited from the common framework for TEX engines as implemented in Web2C
and Kpathsea. Their documentation is available at https://tug.org/web2c and https://tug.
org/kpathsea

Two additional environment variables need more description here: first, SOURCE_DATE_EPOCH
(introduced in version 1.40.17, 2016). If this is set, it must be a positive integer (with one trivial
exception: if it is set but empty, that is equivalent to 0). Non-integer values cause a fatal error.
The value is used as the current time in seconds since the usual Unix “epoch™ the beginning
of 1970-01-01, UTC. Thus, a value of 32 would result in a /CreationDate and /ModDate values of
19700101000032Z. This is useful for reproducible builds of documents. (See also \pdfinfoomitdate,
\pdfsuppressptexinfo, et al.)

The second, related, environment variable is FORCE_SOURCE_DATE. If this is set to 1, TEX’s time-
related primitives are also initialized from the value of SOURCE_DATE_EPOCH. These primitives are
\year, \month, \day, and \time. If SOURCE_DATE_EPOCH is not set, setting FORCE_SOURCE_DATE has
no effect. If FORCE_SOURCE_DATE is unset, set to the empty string, or set to 0, the primitives reflect
the current time as usual. Any other value elicits a warning, and the current time is used. This
is useful if one wants to make reproducible PDFs for a set of documents without changing them
in any way, e.g., an operating system distribution with manuals that use \today. Except in such
unusual circumstances, it is better not to set this, and let the TEX primitives retain the meaning
they have always had.

In addition, if both SOURCE_DATE_EPOCH and FORCE_SOURCE_DATE are set, \pdffilemoddate
returns a value in UTC, ending in Z. (The values of the environment variables are irrelevant in this
case.)

Finally, just to have the list of options and basic invocation at hand, here is a verbatim listing
of the --help and --version output. All options can be specified with one or two dashes and
unambiguously abbreviated.

Usage: pdftex [OPTION]... [TEXNAME[.tex]] [COMMANDS]
or: pdftex [OPTION]... \FIRST-LINE
or: pdftex [OPTION]... &FMT ARGS
Run pdfTeX on TEXNAME, usually creating TEXNAME.pdf.
Any remaining COMMANDS are processed as pdfTeX input, after TEXNAME is read.
If the first line of TEXNAME is J%&FMT, and FMT is an existing .fmt file,
use it. Else use ‘NAME.fmt’, where NAME is the program invocation name,
most commonly ‘pdftex’.

13

https://tug.org/web2c
https://tug.org/kpathsea
https://tug.org/kpathsea

Alternatively, if the

first non-option argument begins with a backslash,

interpret all non-option arguments as a line of pdfTeX input.

Alternatively, if the
next word is taken as

first non-option argument begins with a &, the
the FMT to read, overriding all else. Any

remaining arguments are processed as above.

If no arguments or options are specified, prompt for input.

-cnf-1ine=STRING
-draftmode

-enc

-etex
[-no]-file-line-error
-fmt=FMTNAME
-halt-on-error

-ini

-interaction=STRING
-ipc

-ipc-start
-jobname=STRING
-kpathsea-debug=NUMBER

[-no] -mktex=FMT
-mltex
-output-comment=STRING

-output-directory=DIR
-output-format=FORMAT
[-no]l-parse-first-line
-progname=STRING
-recorder
[-no]-shell-escape
-shell-restricted
-src-specials
-src-specials=WHERE

-synctex=NUMBER

-translate-file=TCXNAME
-8bit

-help

-version

parse STRING as a configuration file line

switch on draft mode (generates no output PDF)

enable encTeX extensions such as \mubyte

enable e-TeX extensions

disable/enable file:line:error style messages

use FMINAME instead of program name or a %& line

stop processing at the first error

be pdfinitex, for dumping formats; this is implicitly
true if the program name is ‘pdfinitex’

set interaction mode (STRING=batchmode/nonstopmode/
scrollmode/errorstopmode)

send DVI output to a socket as well as the usual
output file

as -ipc, and also start the server at the other end

set the job name to STRING

set path searching debugging flags according to
the bits of NUMBER

disable/enable mktexFMT generation (FMT=tex/tfm/pk)

enable MLTeX extensions such as \charsubdef

use STRING for DVI file comment instead of date
(no effect for PDF)

use existing DIR as the directory to write files in

use FORMAT for job output; FORMAT is ‘dvi’ or ‘pdf’

disable/enable parsing of first line of input file

set program (and fmt) name to STRING

enable filename recorder

disable/enable \writel8{SHELL COMMAND}

enable restricted \writel8

insert source specials into the DVI file

insert source specials in certain places of
the DVI file. WHERE is a comma-separated value
list: cr display hbox math par parend vbox

generate SyncTeX data for previewers according to
bits of NUMBER (‘man synctex’ for details)

use the TCX file TCXNAME

make all characters printable by default

display this help and exit

output version information and exit

pdfTeX home page: <https://pdftex.org>

Email bug reports to pdftex@tug.org (https://lists.tug.org/pdftex).

pdfTeX 3.141592653-2.6-1.40.29 (TeX Live 2026)

14

kpathsea version 6.4.2

Copyright 2026 Han The Thanh (pdfTeX) et al.

There is NO warranty. Redistribution of this software is
covered by the terms of both the pdfTeX copyright and
the Lesser GNU General Public License.

For more information about these matters, see the file
named COPYING and the pdfTeX source.

Primary author of pdfTeX: Han The Thanh (pdfTeX) et al.
Compiled with libpng 1.6.54; using libpng 1.6.54
Compiled with zlib 1.3.1; using zlib 1.3.1

Compiled with xpdf version 4.04

2.1 Macro packages supporting pdfTpX

Currently all mainstream macro packages offer pdfTEX support, with automatic detection of pdfTEX
as the engine being used. So normally there is no need to explicitly turn on pdfTEX support.

e For IATEX users, the hyperref package (originally written by Sebastian Rahtz and Heiko
Oberdiek; now maintained by the IATEX team), has substantial support for pdfTEX and
provides access to most of its features. In the simplest and most common case, the user
merely needs to load hyperref, and all cross-references will be converted to PDF hypertext
links. PDF output is automatically selected, compression is turned on, and the PDF page
size is set up correctly. Bookmarks are created to match the table of contents.

e The standard IXTEX packages graphics, graphicx, and color also have built-in pdfTEX
support, which allows use of color, text rotation, and graphics inclusion commands.

e The ConTpXt MKII system by Hans Hagen has full support for pdfTEX in its generalized
hypertext features. The latest ConTEXt supports advanced PDF output, but uses a engine
(LMTX).

e PDF from GNU Texinfo documents can be created by running pdfTEX on the Texinfo file,
instead of TEX. Alternatively, run the shell command texi2pdf instead of texi2dvi.

e For plain TEX users, the miniltx.tex file from the graphics-pln package allows loading
graphics, graphicx, and color. Eplain provides additional support for hyperlinks.

e A modification of webmac.tex, named pdfwebmac.tex, allows production of hyperlinked
PDF versions of the literate source code written in WEB, such as pdfTEX.

For TEX developers: as pdfTEX generates the final PDF output without help of a postprocessor,
macro packages that take care of these PDF features have to be set up properly. Tasks include
handling color, graphics, hyperlink support, threading, fonts, page imposition and manipulation.
All of these PDF-specific tasks can be controlled by pdfTEX’s own primitives (a few also by a
pdfTEX-specific \special{pdf: ...}). Any other \special commands, like the ones defined for
various DVI postprocessors, are simply ignored by pdfTEX when in PDF output mode; a warning
is given for non-empty \special commands.

When a macro package written for classical TEX with DVI output is to be modified for use with
pdfTEX, it is helpful to get some insight to what extent pdfTEX-specific support is needed. This
info can be gathered, for instance, by outputting the various \special commands via \message. as
in:

\pdfoutput=1 \let\special\message

15

or, if this leads to confusion,
\pdfoutput=1 \def\special#i{\writel6{special: #1}}

and see what happens. As soon as one special: message turns up, one knows for sure that
some kind of pdfTEX-specific support is needed, and often the message itself gives a indication of
what is needed.

16

Chapter 3

Setting up fonts

pdfTEX can work with Type 1 and TrueType fonts (and to a small extent also with OpenType
fonts). Font files should be available and embedded for all fonts used in the generated PDF. It
is possible to use METAFONT-generated fonts in pdfTEX—but it is strongly recommended not to
use these fonts if an equivalent is available in Type 1 or TrueType format, if only because bitmap
Type 3 fonts render poorly under enlargement.

3.1 Map files

Font map files provide the connection between TEX TFM font files and outline font file names.
They contain also information about re-encoding arrays, partial font embedding (“subsetting”), and
character transformation parameters (like SlantFont and ExtendFont). Those map files were first
created for DVI postprocessors. But, as pdfTEX in PDF output mode includes all PDF processing
steps, it also needs to know about font mapping, and therefore reads in one or more map files. Map
files are not read in when pdfTEX is in DVI mode. Bitmap fonts can (and normally should) be used
without being listed in the map file.

By default, pdfTEX reads the map file pdftex.map. In Web2C, map files are searched for using
the TEXFONTMAPS config file value and environment variable. By default, the current directory and
various system directories are searched.

Within the map file, each font is listed on a single line. The syntax of each line is upward-
compatible with dvips map files and can contain the following fields (some are optional; explanations
follow):

tfimname psname fontflags special encodingfile fontfile

Here are two (real-world) examples. All the values are explained in detail in the following.

cmr10 CMR10 <cmriO.pfb
ptmr8y NimbusRomNo9L-Regu " TeXnANSIEncoding ReEncodeFont " <texnansi.enc <utmr8a.pfb

It is mandatory that tfmname is the first field. If a psname is given, it must be the second field.
Similarly if fontflags is given it must be the third field (if psname is present) or the second field (if
psname is left out). The positions of special, encodingfile, and fontfile can be mixed.

3.1.1 Map lines: tfmname

The tfmname field specifies the name of the TFM file for a font—the file name given in a TEX \font
command. This name must always be given, with no extension. Examples: cmr10, ptmr8y.

17

3.1.2 Map lines: psname

The psname field specifies the PostScript (or other outline) font name, as defined within the outline
font file. Examples: CMR10, NimbusRomNo9L-Regu. It is highly recommended to use the psname
field, but strictly speaking it is optional. It has two main uses.

First, when a PDF file is embedded by \pdfximage, the /BaseFont names in the font dictionaries
of Type 1 and Type 1C (CFF) fonts from the embedded PDF file are checked against this psname
field. If names match, the glyphs of that font will not be copied from the embedded PDF file, but
instead a local font is opened, and all needed glyphs will be taken from the Type 1 font file that is
mentioned in the map line (see fontfile below). By this collecting mechanism Type 1 glyphs can be
shared between several embedded PDF files and with text that is typeset by pdfTEX, which helps
keep the resulting PDF file size smaller, if many files with similar Type 1(C) fonts are embedded.
Replacing Type 1 fonts from embedded PDF files requires that also a Type 1 font file name is in
the fontfile field (see below).

Second, if a font file is not to be embedded into the PDF output (fontfile field missing), then
the psname field will be copied to the /BaseFont and /FontName dictionary entries in the PDF file,
so that the PostScript font name will be known to viewers and other PDF-reading applications.

3.1.3 Map lines: fontflags

The fontflags field optionally specifies various characteristics of the font. The following description
of these flags is taken, with slight modification, from the PDF reference manual (the section on font
descriptor flags). Viewers may adapt their rendering to these flags, especially when they substitute
for a non-embedded font.

The value of the flags key in a font descriptor is a 32-bit integer that contains a collection of
boolean attributes. These attributes are true if the corresponding bit is set to 1. The following
table specifies the meanings of the bits, with bit 1 being the least significant. Reserved bits must
be set to zero.

bit position semantics

1 Fixed-width font

2 Serif font

3 Symbolic font

4 Script font

5 Reserved

6 Uses the Adobe Standard Roman character set

7 Italic
8-16 Reserved

17 All-capitals font

18 Small-capitals font

19 Force bold at small text sizes
20-32 Reserved

The first several bits specify the general type of font. All characters in a fived-width font (a.k.a.
monospaced, typewriter) have the same width, while characters in a proportional font have different
widths. Characters in a serif font have short strokes drawn at an angle on the top and bottom of
character stems, while sans serif fonts do not have such strokes. A symbolic font contains symbols
rather than letters and numbers. Characters in a script font resemble cursive handwriting. An
all-capitals font, which is typically used for display purposes such as titles or headlines, contains
no lowercase letters. It differs from a small-capitals font in that characters in the latter, while also
capital letters, have been sized and their proportions adjusted so that they have the same size and
stroke weight as lowercase characters in the same typeface family.

18

Bit 6 in the flags field indicates that the font’s character set conforms to the Adobe Standard
Roman Character Set, or a subset of that, and that it uses the standard names for those characters.

Finally, bit 19 is used to determine whether or not bold characters are drawn with extra pixels
even at very small text sizes. Typically, when characters are drawn at small sizes on very low
resolution devices such as display screens, features of bold characters may appear only one pixel wide.
Because this is the minimum feature width on a pixel-based device, ordinary non-bold characters
also appear with one-pixel wide features, and thus cannot be distinguished from bold characters. If
bit 19 is set, features of bold characters may be thickened at small text sizes.

If the fontflags field is not given, and the font is embedded, pdfTEX treats it as the value 4
(decimal, that is, bit position 3 is set), a symbolic font. For non-embedded fonts, the default value
is 0x22, a non-symbolic serif font. If you do not know the correct value, it is best not to specify it
at all, as specifying a bad value of font flags may cause trouble in viewers. On the other hand this
option is not absolutely useless because it provides backward compatibility with older map files (see
the fontfile description below).

3.1.4 Map lines: special

The special field specifies font manipulations in the same way as dvips. Currently only the keywords
SlantFont and ExtendFont are interpreted; other instructions (notably ReEncodeFont and its pa-
rameters, see encoding below) are ignored. The permitted SlantFont range is —1..1; for ExtendFont
it’s —2..2. The text of the special field must be enclosed by ASCII double quote characters: ".

3.1.5 Map lines: encodingfile

The encodingfile field specifies the name of the file containing the external encoding vector to be
used for the font. The encoding file name must have the extension .enc, and the file name including
extension must be given with either a preceding < character or a preceding <[. The format of the
encoding vector is identical to that used by dvips. If no encoding is specified, the font’s built-in
default encoding is used. The encodingfile field may be omitted if you are sure that the font resource
has the correct built-in encoding. In general this option is highly recommended, and it is required
when subsetting a TrueType font.

Starting with pdfTEX version 1.40.19, an encoding file can also be specified for bitmap PK fonts.
In this case, it assigns the glyph names from the given encoding vector, which can be used with the
\pdfglyphtounicode primitive (q.v.). For example:

\pdfglyphtounicode{f£i}{0066 0066 0069} % normally: \input glyphtounicode
\pdfgentounicode=1

\pdfmapline{cmb10 <7t.enc}

\font\cmb=cmb10 \cmb ffi

The result is a PDF file with a correctly-labeled /£fi character instead of the numeric character
position in cmb10.tfm (decimal 14).

3.1.6 Map lines: fontfile

The fontfile field sets the name of the font file to be embedded into the PDF output for a given
TEX font; the tfmname < fontfile mapping is the most prominent use of the pdftex.map file.

The font file name must refer to a Type 1 or TrueType font file. If the fontfile field is missing,
no font embedding can take place; a warning will be given, unless the psname field contain one of
the 14 standard font names. Not embedding all fonts in a PDF file is troublesome, as this forces
the PDF viewer to use or synthesize a replacement, typically with awful results.

19

The font file name should be preceded by one or two special characters, specifying how to handle
the font file:

e If the font file name is preceded by a < character (as in <cmr10.pfb), the font file will be
only partially embedded in the PDF output (“subsetted”), meaning that only used glyphs
are written to the PDF file. This is the most common use and is strongly recommended for
any font, as it ensures the portability and reduces the size of the PDF output. Subsetted
fonts are included in such a way that name and cache clashes are minimized.

e If the font file name is preceded by a double <<, the font file will be included entirely—all
glyphs of the font are embedded, including even those not used in the document. Apart
from increasing the PDF output size, this option may cause troubles with TrueType fonts,
so it is normally not recommended for Type 1 or TrueType fonts. But this is currently
the only mode that allows the use of OpenType fonts. This mode might also be useful
in case the font is atypical and cannot be subsetted well by pdfTEX. Beware: proprietary
font vendors typically forbid full font inclusion.

e As of pdfTEX version 1.40.0, if no special character precedes the font file name, it is ignored,
with a warning. You achieve exactly the same PDF result if you just remove the font file
name from the map entry. Then the glyph widths that go into the PDF file are extracted
from the TFM file, and a font descriptor object is created that contains approximations
of the font metrics for the selected font.

e Specifying the psname and no font file name is only useful as a last-ditch fallback when
you do not want to embed the font (e.g., due to font license restrictions), but wish to use
the font metrics and let the PDF viewer generate instances that look close to the used
font, in case the font resource is not installed on the system where the PDF output will be
viewed or printed. To use this feature, the font flags must be specified, and it must have
the bit 6 set on, which means that only fonts with the Adobe Standard Roman character
set can be simulated. The only exception is the case of a symbolic font. In these days of
Unicode, these font approximations are not likely to be useful.

If you encounter problematic lookups, for instance if pdfTEX tries to open a .pfa file instead
of a .pfb, you can add the suffix to the filename. In this respect, pdfTEX completely relies on the
Kpathsea library.

For Type 1 and TrueType fonts, the font file will be included only once in the PDF output,
regardless of how many TEX \font instances are used in the document. For instance, given

\font\a
\font\b

cmrl2
cmrl2 at 1lipt

the outline file cmr12.pfb will only be included once in the PDF, and merely scaled down to
create the instance for \b.

If a used font is not present in the map files, pdfTEX will try to use PK fonts as most DVI
drivers do, creating PK fonts on-the-fly if needed. This is the normal, and recommended, way to
use bitmap fonts.

3.1.7 Map lines: summary

To summarize this rather complex story, let’s look at some more example map lines. The most
common way is to embed only a subset of glyphs from a font for a particular desired encoding,
here 8r:

20

ptmri8r Times-Italic <8r.enc <ptmri8a.pfb
Without re-encoding it looks like this:
cmr10 CMR10 <cmrilO.pfb
SlantFont and ExtendFont fields are specified as with dvips:

psyro StandardSymL ".167 SlantFont" <usyr.pfb
pcrr8rn Courier ".85 ExtendFont" <8r.enc <pcrr8a.pfb

Entirely embed a font into the PDF file without and with re-encoding (not typically useful):

fmvr8x MarVoSym <<marvosym.pfb
pgsr8r GillSans <8r.enc <<pgsr8a.pfb

A TrueType font can be used in the same way as a Type 1 font:
verdana8r Verdana <8r.enc <verdana.ttf

Finally, a few cases with non-embedded fonts. If the font file is missing, the viewer application
will have to use its own approximation of the missing font (with and without re-encoding):

ptmr8r Times-Roman <8r.enc
psyr Symbol

In the final example the numerical font flags (bit position 6) specify using the Adobe Standard
Roman character set, so the viewer might try an approximation:

pgsr8r GillSans 32

Not embedding fonts is rather risky and should generally be avoided. The recommendation these
days is to embed all fonts, even the 14 standard ones.

3.2 Helper tools for TrueType fonts: ttf2afm

As mentioned above, pdfTEX can work with TrueType fonts. Defining TrueType fonts is similar to
Type 1. The only extra thing to do with TrueType is to create a TFM file. There is a program
called ttf2afm in the pdfTEX distribution which can be used to extract AFM from TrueType fonts
(another conversion program is ttf2pt1). Basic usage of ttf2afm:

ttf2afm -e encfile.enc -o output.afm input.ttf

A TrueType file can be recognized by its suffix ttf. If no -o option is given, ttf2afm writes the
output AFM to standard output.

The optional encfile specifies the encoding, which is the same as the encoding vector used in
map files for pdfTEX and dvips. That is, it must be an 8-bit encoding, not Unicode. If the encoding
is not given, all the glyphs of the AFM output will be mapped to /.notdef. If we need to know
which glyphs are available in the font, we can run ttf2afm without any -e to get all glyph names.
The resulting AFM file can be used to generate a TFM by applying the afm2tfm utility.

To use a new TrueType font the minimal steps may look like below, supposing that a map file
test.map is used.

21

ttf2afm -e 8r.enc -o times.afm times.ttf
afm2tfm times.afm -T 8r.enc
echo "times TimesNewRomanPSMT <8r.enc <times.ttf" >>test.map

TrueType fonts have some limitations in comparison with Type 1 fonts:

e To subset a TrueType font, the font must be specified as re-encoded, therefore an encoding
vector must be given.

e TrueType fonts used in embedded PDF files are kept untouched; they are not replaced or
merged with the same font used in the document, as happens with Type 1.

e The special effects SlantFont/ExtendFont did not work before version 1.40.0.
For much more about pdfTEX and TrueType fonts, including many details on handling glyph

names, see “A closer look at TrueType fonts and pdfTEX”, TUGboat 30:1 (2009), pp. 32-34, https:
//tug.org/TUGboat/tb30-1/tb94thanh.pdf.

22

https://tug.org/TUGboat/tb30-1/tb94thanh.pdf
https://tug.org/TUGboat/tb30-1/tb94thanh.pdf

Chapter 4
pdfTEX primitives

Here follows a description of the primitives added by pdfTEX to the original TEX engine (other
extensions by e-TEX, mlITEX and encTEX are not described). Many of these primitives are described
further in the samplepdf.tex file in the pdfTEX distribution (q.v.).

If the output is DVI, then the pdfTEX-specific dimension parameters are not used at all.
However, some pdfTEX integer parameters can affect DVI as well as PDF output (specifically,
\pdfoutput and \pdfadjustspacing).

A warning to macro writers: if you define macros whose names start with \pdf, you risk name
clashes with new primitives that may be introduced in future versions of pdfTEX.

General warning: many of these new primitives, for example \pdfdest and \pdfoutline, write
their arguments directly to the PDF output file (when producing PDF), as PDF string constants.
This means that you (or, more likely, the macros you write) must escape characters as necessary
(namely \, (, and). Otherwise, an invalid PDF file may result. The hyperref and Texinfo packages
have code which may serve as a starting point for implementing this, although it will certainly need
to be adapted to any particular situation.

4.1 Document setup

4.1.1 \pdfoutput
\pdfoutput (integer)

This parameter specifies whether the output format should be DVI or PDF. A positive value
means PDF output, otherwise (default 0) one gets DVI output. This primitive is the only one
that must be set to produce PDF output (the command-line option -output-format=pdf may
alternatively be used); all other primitives are optional. This parameter cannot be specified after
shipping out the first page. In other words, to get PDF output, we have to set \pdfoutput before

pdfTEX the first page.
A simple way of making macros aware of pdfTEX in both PDF or DVI mode is:

\ifx\pdfoutput\undefined \csname newcount\endcsname\pdfoutput \fi
\ifcase\pdfoutput DVI CODE \else PDF CODE \fi

Using the ifpdf.sty file, which works with both KIEX and plain TEX, is a cleaner way of
doing this. Originally, the simple test \ifx\pdfoutput\undefined sufficed; but for many years, the
pdfTEX engine is used in distributions also for non-PDF formats (e.g., IXTEX), so \pdfoutput may
be defined even when the output format is DVI.

23

4.1.2 \pdfmajorversion, \pdfminorversion

\pdfmajorversion (integer)
\pdfminorversion (integer)

Together, these two primitives specify the PDF version for generated PDF output. The de-
faults compiled into the pdfTEX program are \pdfmajorversion=1 and \pdfminorversion=4, thus
PDF 1.4 is generated by default.

However, distributions typically alter the engine’s compiled default minor version of 4 when
building formats. For example, as of 2010, TEX Live sets \pdfminorversion=5 when formats are
built. This is so object compression can be enabled (see \pdfobjcompress below).

This value also defines the highest PDF version for included PDFs to be allowed without error,
by default (see \pdfinclusionerrorlevel).

The values for both must be > 1 but are not checked further. Furthermore, they are set
independently; setting only \pdfmajorversion=2 would result in PDF 2.4 output; it’s necessary to
additionally set \pdfminorversion.

If specified, these primitives must appear before any data is written to the generated PDF
file. The \pdfmajorversion primitive was introduced in pdfTEX 1.40.21. \pdfminorversion was
originally a synonym of the \pdfoptionpdfminorversion command, which is now obsolete. The
primitive was introduced in pdfTEX 1.30.0.

4.1.3 \pdfcompresslevel
\pdfcompresslevel (integer)

This integer parameter specifies the level of stream compression. Zero means no compression,
1 means fastest, 9 means best, 2..8 means something in between. A value outside this range will be
adjusted to the nearest meaningful value. This parameter is read each time pdfTEX starts a stream.
This compression applies to text, inline graphics, and embedded PNG images (but only if they
are un- and re-compressed during the embedding process). It is implemented by the z1ib library).
Setting \pdfcompresslevel=0 is useful for PDF stream debugging.

4.1.4 \pdfobjcompresslevel
\pdfobjcompresslevel (integer)

This integer parameter controls the compression of non-stream objects. If specified, the param-
eter must appear before any data is written to the PDF output. The primitive was introduced in
pdfTEX 1.40.0.

In the PDF-1.4 specification, non-stream objects had to be written in the PDF file as clear
text, uncompressed. The PDF-1.5 specification allows collecting non-stream objects as “compressed
objects” into “object stream” objects (/Type/0bjStm, see the PDF reference manual, 5th ed., §3.4.6).
At the end of the PDF file, an /XRef cross-reference stream is then written out instead of the object
table. This can result in a considerably smaller PDF file, particularly if lots of annotations and
links are used.

The writing of compressed objects is enabled by setting \pdfobjcompresslevel to a value
between 1 and 3; it’s disabled if 0 (default). Object compression also requires \pdfminorversion > 5
(or \pdfmajorversion > 2), else a warning is given and the compression is disabled. The value
of \pdfobjcompresslevel is clipped to the range 0..3, but using values outside this range is not
recommended (for future extension).

Values for \pdfobjcompresslevel have the following effects:

e When set to 0, no object streams are generated at all.

24

e When set to 1, all non-stream objects are compressed with the exception of any objects
coming with embedded PDF files (“paranoid” mode, to avoid yet unknown problems), and
also the /Info dictionary is not compressed for clear-text legibility.

e When set to 2, also all non-stream objects coming with embedded PDF files are com-
pressed, but the /Info dictionary is still not compressed.

e Finally, when set to 3, all non-stream objects are compressed, including the /Info dictio-
nary (this means that the /Info can’t be read as clear text any more). If object streams
are to be used, currently \pdfobjcompresslevel=2 is recommended, and is so specified in
some distributions, including TEX Live 2010 and later.

Compatibility caveats: PDF files generated with object streams enabled can’t be read with (suffi-
ciently old) PDF viewers that don’t understand PDF-1.5 files. For widest distribution and unknown
audience, don’t activate object stream writing. The PDF-1.5 standard describes also a hybrid object
compression mode that gives some backward compatibility, but this is currently not implemented, as
PDF-1.5 was rather quickly adopted by modern PDF viewers. Also not implemented is the optional
/Extends key.

4.1.5 \pdfdecimaldigits
\pdfdecimaldigits (integer)

This integer parameter specifies the numeric accuracy of real coordinates as written to the PDF
file. It gives the maximal number of decimal digits after the decimal point. Valid values are in the
range 0..4. A higher value means more precise output, but also results in a larger file size and more
time to display or print. In most cases the optimal value is 2. This parameter does not influence the
precision of numbers used in raw PDF code, like that used in \pdfliteral and annotation action
specifications; also multiplication items (e.g., scaling factors) are not affected and are always output
with best precision. This parameter is read when pdfTEX writes a real number to the PDF output.

When including huge MetaPost images using supp-pdf . tex, one can limit the accuracy to two
digits with \twodigitMPoutput.

4.1.6 \pdfhorigin
\pdfhorigin (dimen)

This parameter can be used to set the horizontal offset of the output box from the top left corner
of the page. A value of 1 inch corresponds to the normal TEX offset. This parameter is read when
pdfTEX starts shipping out a page to the PDF output.

For all normal purposes, this parameter should always be kept at 1 true inch. If you want to shift
text on the page, use TEX’s own \hoffset primitive. To avoid surprises, after global magnification
has been changed by the \mag primitive, the \pdfhorigin parameter should still be 1 true inch, e.g.,
by setting \pdfhorigin=1 true in after the \mag setting. Or, you can preadjust the \pdfhorigin
value before typing \mag, so that its value after the \mag command ends up at 1 true inch again.

4.1.7 \pdfvorigin
\pdfvorigin (dimen)
This parameter is the vertical companion of \pdfhorigin, and the notes above regarding \mag

and true dimensions apply. Also keep in mind that the TEX coordinate system starts in the top left
corner (downward), while PDF coordinates start at the bottom left corner (upward).

25

4.1.8 \pdfpagewidth
\pdfpagewidth (dimen)

This dimension parameter specifies the page width of the PDF output (the screen, the paper,
etc.). pdfTEX reads this parameter when it starts shipping out a page. If magnification has been
changed by the \mag primitive, check that this parameter reflects the desired true page width. When
part of the page falls off the paper or screen, it’s quite possible that this parameter is set wrong.

If the value is set to zero, the page width is calculated as

widthpex being shipped out + 2 X (\horigin + \hoffset).

It is not wise to rely on this default calculation, since box widths may vary unexpectedly.

4.1.9 \pdfpageheight
\pdfpageheight (dimen)
Similar to the previous item, this dimension parameter specifies the page height of the PDF

output; the notes above apply. If set to zero, the page height will be calculated analogously to the
above.

4.2 Document info and catalog

4.2.1 \pdfomitinfodict
\pdfomitinfodict (integer)

If nonzero, omit the /Info dictionary completely, as required by the PDF A-4 standard. The
primitive was introduced in pdfTEX 1.40.25.

4.2.2 \pdfinfo
\pdfinfo (general text)

This primitive allows the user to specify information for the document info dictionary. Provided
information can be extracted from the output PDF by, for instance, the pdfinfo program.

The (general text) is a collection of key-value-pairs. The key names are preceded by a /, and the
values, being strings, are given between parentheses. All keys, and the primitive itself, are optional.
Possible keys are:

/Title,

/Author,

/Subject,

/Keywords,

/Producer (defaults to pdfTeX-1.40.29),

/Creator (defaults to TeX),

/CreationDate (defaults to current date and time, with time zone),
/ModDate (same default as /CreationDate),

/Trapped (defaults to /False,

/PTEX.Fullbanner (defaults to the \pdftexbanner string, q.v.).

/CreationDate and /ModDate are expressed in the form D:YYYYMMDDhhmmssTZ, where ‘D:’ is a
constant string prefix, YYYY is the year, MM is the month, DD is the day, hh is the hour, mm is the
minutes, ss is the seconds, and TZ is an optional string denoting the time zone, Z for universal
time. For example, this is the Unix epoch, the beginning of 1970-01-01 UTC, in this format:
D:19700101000000Z. If the time zone is not UTC, it is given as +HH’mm’ or -HH’mm’, indicating an

26

offset of the given hours and minutes from UTC, with the given either later (+) or earlier (-) than
UTC. For more details, see the PDF reference manual, §7.9.4.

Multiple appearances of \pdfinfo are concatenated. Usually if a key is given more than once,
the first appearance will be used, but this is viewer-dependent. Except for standard TEX macro
expansion, pdfTEX does not perform any further operations in the (general text) provided by the
user.

Here is an example of using \pdfinfo to include the information not supplied by pdfTEX:

\pdfinfo {
/Title (example.pdf)
/Author (Tom and Jerry)
/Subject (Example)
/Keywords (mouse, cat)

}

4.2.3 \pdfinfoomitdate
\pdfinfoomitdate (integer)

If nonzero, omit the /CreationDate and /ModDate keys from the document info dictionary
described above. This can be useful in making reproducible PDFs. The primitive was introduced

in pdfTEX 1.40.17.

4.2.4 \pdfsuppressptexinfo
\pdfsuppressptexinfo (integer)
This value is treated as a bit mask, specifying which PTEX. * keys to omit from the output:

value suppresses
1 PTEX.Fullbanner
2 PTEX.FileName
4 PTEX.PageNumber
8 PTEX.InfoDict

Thus, the value -1, setting all the bits, suppresses everything.

PTEX.Fullbanner is included by default in the general document info dictionary, as mentioned
under \pdfinfo above. The other PTEX. * keys are included when a PDF is included in the document
(and not otherwise), as described in section 6.

This conditional suppression can be useful in making reproducible PDFs. The primitive was
introduced in pdfTEX 1.40.17.

4.2.5 \pdfcatalog
\pdfcatalog (general text) [openaction (action spec) |

Similar to the document info section is the document catalog, where possible keys are /URI,
which specifies the base url of the document, and /PageMode, which determines how the PDF
viewer displays the document on startup. The possibilities for the latter are given in this table:

value meaning

/UseNone neither outline nor thumbnails visible
/UseOutlines outline visible

/UseThumbs thumbnails visible

/FullScreen full-screen mode

The default /PageMode setting is /UseNone. In full-screen mode, there is no menu bar, window
controls, nor any other window present.

27

After the (general text) of the catalog, a construct openaction (action spec) can be given, where
openaction is a pdfTEX keyword, and (action spec) specifies the action to be taken when opening
the document. This (action spec) is the same as for internal links; see section 4.11.

Several settings can be made in one \pdfcatalog call, for example:

\pdfcatalog {
/PageMode /FullScreen
} openaction goto page 2 {/Fit}

4.2.6 \pdfcreationdate
\pdfcreationdate (expandable)

Expands to the date string pdfTEX uses in the info dictionary of the document, e.g., for this
file: D:20260216073304-08’00. The primitive was introduced in pdfTEX 1.30.0.

4.2.7 \pdfnames
\pdfnames (general text)

This primitive inserts the (general text) to the /Names array. The text must conform to the
specifications as laid down in the PDF reference manual, or the document may be invalid.

4.2.8 \pdftrailer
\pdftrailer (general text)

This command puts its argument text verbatim into the file trailer dictionary. Example:
\pdftrailer{/mytrlrkey /mytrlrval}. The primitive was introduced in pdfTEX 1.11a.

4.2.9 \pdftrailerid
\pdftrailerid (general text)

Use the (general text) to seed the /ID value in the trailer, instead of the default combination
of the input file name and starting time. If the argument is empty, the /ID is omitted entirely.

Example: \pdftrailerid{}. This can be useful in making reproducible PDFs. The primitive was
introduced in pdfTEX 1.40.17.

4.2.10 \pdfuseptexunderscore
\pdfuseptexunderscore (integer)

If this parameter is zero, and \pdfmajorversion is < 2, use ‘/PTEX. as the prefix for the
relevant /Info keys, as was done through 2024. If this parameter is > 0, or \pdfmajorversion is
> 2, use ‘PTEX_’, with underscore instead of period. For example, if \pdfmajorversion=2, the key
/PTEX_Fullbanner will be defined instead of /PTEX.Fullbanner.

Using _ is required by updates to the PDF 32000-2-2020 standard, and/or by validators; for
backwards compatibility, PDF 1.x output still uses . by default. The primitive was introduced in
pdfTEX 1.40.27.

28

4.3 Fonts

4.3.1 \pdfadjustspacing
\pdfadjustspacing (integer)

This primitive controls whether font expansion happens (this operation is described in detail at
\pdffontexpand). By default, \pdfadjustspacing is set to 0; then font expansion is disabled, so
that the pdfTEX output is identical to that from the original TEX engine.

Font expansion can be activated in two modes. When \pdfadjustspacing is set to 1, font
expansion is applied after TEX’s normal paragraph breaking routines have broken the paragraph
into lines. In this case, line breaks are identical to standard TEX behavior.

When set to 2, the width changes that are the result of stretching and shrinking are taken into
account while the paragraph is broken into lines. In this case, line breaks are likely to be different
from those of standard TEX. Paragraphs may well become longer or shorter.

Both alternatives require a collection of TFM files that are related to the (stretch) and (shrink)
settings for the \pdffontexpand primitive, unless this is given with the autoexpand option.

4.3.2 \pdffontexpand
\pdffontexpand (font) (stretch) (shrink) (step) [autoexpand]

This extension to TEX’s font definitions controls a major pdfTEX feature called font expansion.
To enable font expansion, \pdfadjustspacing must be set to a value greater than zero. We describe
the basic process with an example:

\font\somefont=sometfm at 10pt
\pdffontexpand\somefont 30 20 10 autoexpand
\pdfadjustspacing=2

The 30 20 10 means this: “hey TEX, when line breaking is going badly, you may stretch the
glyphs from this font as much as 3% or shrink them as much as 2%.” For practical reasons pdfTEX
uses discrete expansion steps, in this example, 1%.

Roughly speaking, the idea is as follows: When TEX cannot break a line in the appropriate way,
the unbreakable parts of the last word may stick into the margin. When pdfTEX sees this, it will
try to scale (shrink) the glyphs in that line using fixed steps, until the line fits. When lines are too
spacey, the opposite happens: pdfTEX starts scaling (stretching) the glyphs until the white space
gaps are acceptable. This glyph stretching and shrinking is called font expansion.

There are two different modes for font expansion, depending on whether autoexpand is specified:

1. If the autoexpand keyword is given—this is recommended mode—only a single map entry
is needed for all expanded font versions, using the name of the unexpanded TFM file
(tfmname in section 3.1.1). No expanded tfmname versions need be mentioned (indeed,
they are ignored), as pdfTEX generates expanded instances of the unexpanded TFM data
structures and keeps them in its memory. As of pdfTEX 1.40.0, the autoexpand work is
done within the page stream by modification of the text matrix (PDF operator “Tm”), and
not at the font file level, giving the advantage that it now works not only with Type 1
but also with TrueType and OpenType fonts (and even without embedding a font file; but
that’s not recommended). In this mode pdfTEX requires only unexpanded font files.

2. Second, if the autoexpand keyword is not given, setting up font expansion requires con-
siderably more work, as there must be map entries for TFM files in all required expansion
values. The expanded tfmname variants are constructed by adding the font expansion

29

value to the tfmname of the base font, e.g., there must be a map entry with tfmname
sometfm+10 for 1% stretch or sometfm-15 for 1.5% shrink. This also means that for each
expanded font variant a TFM file with properly expanded metrics must exist. In addition
to the TFM file, it is necessary to provide, for each expansion value, an individually crafted
font file with the expanded glyphs. Thus, this allows the absolute best possible output,
controlling the glyphs for every expanded variant of the font. It is a rare document indeed
for this to be worth the trouble.

One technical drawback of non-autoexpand mode is that all needed individual font files
need to be embedded in the PDF output for each expanded font, leading to significantly
larger PDF files than in autoexpand mode.

Another caveat for non-autoexpand mode: when \pdffontexpand is executed, pdfTEX
immediately loads two fonts, at the maximum stretch and shrink; in our example, sometfm+
30 and sometfm-20. (If they aren’t available, mktextfm may be uselessly called, and then
an error message issued.) This happens even if those fonts never end up being used, which
is arguably undesirable, but hard to change. It is not a problem when using autoexpand.

The font expansion mechanism is inspired by an optimization first introduced by Prof. Hermann
Zapf, which in itself goes back to optimizations used in the early days of typesetting: use different
glyphs to optimize the grayness of a page. So, there are many, slightly different a’s, e’s, etc. For
practical reasons pdfTEX does not use such huge glyph collections; it uses horizontal scaling instead.
This is sub-optimal, and possibly offensive to the design, though the expansions are tiny. It is up
to the user to decide whether such slightly remastered fonts are acceptable. As an example, this
document is typeset with font expansion and margin kerning activated (via the microtype IKITEX
package).

4.3.3 \efcode
\efcode (font) (8-bit number) (integer)

We haven’t yet told the whole story. One can imagine that some glyphs are visually more
sensitive to stretching or shrinking than others. Then the \efcode primitive can be used to influence
the expandability of individual glyphs within a given font, as a factor applied to the expansion
setting from the \pdffontexpand primitive. The syntax is similar to \sfcode (but with the (font)
required), and it defaults to 1000, meaning 100% expandability. The given integer value is clipped
to the range 0..1000, corresponding to a usable expandability range of 0..100%. Examples:

\efcode\somefont ‘A=800
\efcode\somefont ‘0=0

Here the A in \somefont may only stretch or shrink by up to 80% of the current expansion
value for that font, and expansion for the O is disabled. The actual expansion is still bound to the
steps as defined by \pdffontexpand primitive.

Changes to this table are global, i.e., ignore TEX’s usual grouping, and apply only to the given
(font).

4.3.4 \pdfprotrudechars
\pdfprotrudechars (integer)

Yet another way of optimizing paragraph breaking is to let certain characters move into the
margin (‘character protrusion’). Character protrusion is disabled when \pdfprotrudechars=0 or
negative.

30

When \pdfprotrudechars=1, the glyphs qualified as such will make this move when applicable,
without changing the line-breaking. When \pdfprotrudechars=2 (or greater), character protrusion
will be taken into account while considering breakpoints, so line-breaking might be changed. This
qualification and the amount of shift are set by the primitives \rpcode and \1lpcode.

If you want to protrude an item other than a character (e.g., an \hbox), you can do so by
padding the item with an invisible zero-width character for which protrusion is activated.

4.3.5 \rpcode, \1lpcode

\rpcode (font) (8-bit number) (integer)
\1lpcode (font) (8-bit number) (integer)

The amount that a character from a given font may shift into the right margin (‘character
protrusion’) is set by the primitive \rpcode. The protrusion distance is the integer value given to
\rpcode, multiplied by 0.00lem from the current font. The given integer value is clipped to the
range —1000..1000, corresponding to a usable protrusion range of —lem..lem. \lpcode is exactly
analogous to \rpcode, but affects the amount by which characters may protrude into the left margin.

Examples:

\rpcode\somefont ¢,=200
\rpcode\somefont ‘-=150

Here the comma may shift by 0.2em into the margin and the hyphen by 0.15em. All these small
bits and pieces will help pdfTEX to give you better paragraphs (use \rpcode judiciously; don’t
overdo it).

Remark: old versions of pdfTEX use the character width as measure. This was changed to a
proportion of the em-width after Han Thé Thanh finished his master’s thesis.

Changes to these tables are global, i.e., ignore TEX’s usual grouping, and apply only to the given
(font).

4.3.6 \leftmarginkern, \rightmarginkern

\leftmarginkern (box number) (expandable)
\rightmarginkern (box number) (expandable)

The \leftmarginkern (box number) primitive expands to the width of the margin kern at the
left side of the horizontal list stored in \box (box number). The expansion string includes the unit
pt. E.g., when the left margin kern of \box0 amounts to —10pt, \leftmarginkernO will expand to
-10pt. The primitive \rightmarginkern works analogously for the right margin. The primitives
were introduced in pdfTEX 1.30.0.

These are auxiliary primitives to make character protrusion more versatile. When using the
TEX primitives \unhbox or \unhcopy, the margin kerns at either end of the unpackaged hbox will
be removed (e.g., to avoid weird effects if several hboxes are unpackaged behind each other into the
same horizontal list). These \unhbox or \unhcopy commands are often used together with \vsplit
for dis- and re-assembling of paragraphs, e.g., to add line numbers. Paragraphs treated like this
do not show character protrusion by default, as the margin kerns have been removed during the
unpacking process.

The \leftmarginkern and \rightmarginkern primitives allow access to the margin kerns and
store them away before unpackaging the hbox. E.g., the following code snippet restores margin
kerning of a horizontal list stored in \box\testline, resulting in a hbox with the original margin
kerning, now inserted by ordinary kerns.

31

\dimenO=\leftmarginkern\testline
\dimenl=\rightmarginkern\testline
\hbox to\hsize{\kern\dimenO\unhcopy\testline\kern\dimenl}

4.3.7 \letterspacefont
\letterspacefont (control sequence) (font) (integer)

This primitive creates an instance of (font) with the widths of all glyphs increased by (integer)
thousandths of an em (as defined by (font)). The effect is letter spacing, but the glyphs are actually
wider, as the sidebearings are increased, so a single glyph will take more space. For instance, the
following creates a font \1sfont whose glyphs are all 1.2pt larger than those of \normalfont:

\font\normalfont=myfont at 12pt
\letterspacefont\lsfont\normalfont 100

Negative values are allowed for (integer). Letter spacing works natively in PDF mode only,
unless special fonts are devised (in our example, a myfont+1001s font), as with font expansion.

4.3.8 \pdfcopyfont
\pdfcopyfont (control sequence) (font)

This primitive defines (control sequence) as a synonym for (font).

4.3.9 \pdffakespace
\pdffakespace

Always insert a fake interword space in the output (PDF only; this primitive is an error in
DVI mode), regardless of the values of \pdf interwordspaceon and \pdf interwordspaceoff (q.v.).
Example:

Text with a fake interword \pdffakespace space.

The primitive was introduced in pdfTEX 1.40.15.

4.3.10 \pdffontattr
\pdffontattr (font) (general text)

This primitive inserts the (general text) into the /Font dictionary. The text must conform to
the specifications as laid down in the PDF reference manual, or the document may be invalid. For
examples, see the cmap and CJK packages.

4.3.11 \pdffontname
\pdffontname (font) (expandable)

In PDF files produced by pdfTEX one can recognize a font resource by the prefix /F followed by
a number, for instance /F12 or /F54. For a given TEX (font), this primitive expands to the number
from the corresponding font resource name. E.g., if /F12 corresponds to some TEX font \foo, then
\pdffontname\foo expands to the number 12.

In the current implementation, when \pdfuniqueresname (see below) is set to a positive value,
the \pdffontname still returns only the number from the font resource name, without the appended
random string.

32

4.3.12 \pdffontobjnum
\pdffontobjnum (font) (expandable)

This command is similar to \pdffontname, but it returns the PDF object number of the font dic-
tionary instead of the number from the font resource name. E.g., if the font dictionary (/Type/Font)
in PDF object 3 corresponds to some TEX font \foo, then \pdffontobjnum\foo gives the number 3.

Use of \pdffontname and \pdffontobjnum allows users full access to all the font resources used
in a document.

4.3.13 \pdffontsize
\pdffontsize (font) (expandable)

This primitive expands to the font size of the given font, with unit pt. E.g., when using the
plain TEX macro package, the call \pdffontsize\tenrm expands to 10.0pt.

4.3.14 \pdfgentounicode
\pdfgentounicode (integer)

By default, pdfTEX does not include a /ToUnicode resource when including fonts in the output.
Such a resource (also called a CMap resource) maps glyph names to Unicode characters in a PDF
file. Lacking such a resource, it is the PDF reader which determines how and whether searching in
the PDF file works. In practice, searching for basic ASCII characters generally works, but searching
for anything beyond those, including ligatures such as ‘fi’, is likely to fail.

If \pdfgentounicode is set to 1 when the job ends, the /ToUnicode resource will be included
in the output, with mappings for Type 1 fonts used—unless \pdfnobuiltintounicode (q.v.) is set
for a given font.

The mapping is created as follows: for each glyph in the font, look for its ToUnicode value in a
global hash table. By default that global hash table is empty, in which case pdfTEX merely emits a
warning. Entries are added to the table using the command \pdfglyphtounicode, described next.

4.3.15 \pdfglyphtounicode
\pdfglyphtounicode (general text) (general text)

The first argument is the name of a glyph, the second is a string of Unicode numeric values
denoting characters, separated by spaces. For instance:

\pdfgentounicode=1
\pdfglyphtounicode{f£}{0066 0066}

maps the £f ligature to a pair of f characters (whose code is U+0066, that is, ASCII 0x66).

Once a single \pdfglyphtounicode definition is made, whether it is used or not, another feature
comes into play: all glyph names of the form uniXXXX or uXXXX are mapped to the natural U+XXXX.
Many fonts use this style of naming.

In addition, the glyphtounicode.tex file (distributed with pdfTEX and other software) contains
thousands of such definitions, covering most common glyph names. So, for practical purposes, one
would probably want:

\input glyphtounicode
\pdfgentounicode=1

(IATEX users could load the cmap package to achieve the same effect.)
By default, these glyph name-to-unicode mappings are global. Thus,

33

\pdfglyphtounicode{abc}{1234}

would map the glyph named abc to U+1234 for every font. However, it’s possible to make a mapping
for a single font using a tfm: prefix:

\pdfglyphtounicode{tfm:foo/abc}{5678}

means that for the font foo.tfm, only, the glyph abc is mapped to U+5678.

Glyph names sometimes contain a dot, as in somechar.sc. pdfTEX simply strips the dot and
everything after it before looking up the name, so in this case it would look for somechar (even if
somechar.sc exists in the mappings, it will not be used). This behavior could be made smarter if
there is a demand for it.

4.3.16 \pdfincludechars
\pdfincludechars (font) (general text) (expandable)

This command causes pdfTEX to treat the characters in (general text) as if they were used with
(font), which means that the corresponding glyphs will be embedded into the font resources in the
PDF output. Nothing is appended to the list being built.

4.3.17 \pdfinterwordspaceon, \pdfinterwordspaceoff, \pdfspacefont

\pdf interwordspaceon
\pdfinterwordspaceoff
\pdfspacefont (general text)

The first two commands insert corresponding whatsit items which turn on/off generation of
faked interword spaces in the PDF output (they cause errors in DVI output). This allows for better
reflowing of text on the fly by PDF readers, better extraction of textual content, and is required by
PDF/A. It does not affect the normal TEX justification with glue of the typeset output.

This works roughly as follows: with \pdfinterwordspaceon, pdfTEX will guess when an inter-
word space should be inserted, based on movement within some limits in horizontal direction. When
found, pdfTEX inserts a true space character into the PDF page description for the viewers, and
adjusts the next movement so that the next character will be in the expected position, according
to normal TEX behavior.

Where does that “true space character” come from? There are two possibilities.

o If the current font has a real space character, it is used. pdfTEX considers a font to have
such a space character if 1) the font has an encoding vector (. enc file) specified in its map
entry, and 2) the encoding has a glyph named space (that is, the PostScript name /space)
at slot 32. For example, the font texnansi-1mr10 uses the encoding file lm-texnansi.enc,
which has such an entry.

e If the current font does not have such a space character (this is the case for most traditional
TEX fonts, such as cmr10 and ec-1mr10), pdf TEX will use the space character from a special
fallback font named (by default) pdftexspace|.tfm|. pdfTEX automatically defines a map
entry for this font which looks like this:

\pdfmapline{=pdftexspace PdfTeX-Space <pdftexspace.pfb}

34

The pdftexspace.tfm and pdftexspace.pfb files are expected to be available to pdfTEX
just like any other font. (They are distributed with pdfTEX.) The pdftexspace font was
constructed by hand; it has a space character that is .333em (and no other characters).

A different fallback font for the space character can be given via \pdfspacefont{myfont}.
This is most likely to be useful for testing and debugging. In this case, pdfTEX assumes that
the given font has a real space character at slot 32, and that any necessary corresponding
map entry exists. For example:

\pdfspacefont{texnansi-1lmr10} % use space char from this font if
% current font has no space char

History: Before pdfTEX version 1.40.25, no check was made for a space character in the current
font, the fallback font was named dummy-space, and its space character was tiny, 0.00lem. It turned
out that PDF viewers were unhappy with this tiny space, especially with tagged PDF.

Example of usage (see also the fake-interword-space.tex test file):

Text with no interword spaces.

\pdfglyphtounicode{space}{0020}
\pdf interwordspaceon

Switch to text with faked interword spaces.
\pdfinterwordspaceoff

Back to text with no interword spaces.

The primitives were introduced in pdfTEX 1.40.15, 1.40.25.

4.3.18 \pdfmapfile
\pdfmapfile (map filename)

This primitive is used for reading a font map file consisting of one or more font map lines. The
name of the map file is given in the (map filename) together with an optional leading modifier
character, as explained below. If your map file isn’t in the current directory or a standard system
directory, you will need to set the TEXFONTMAPS variable (in Web2C) or give an explicit path so that
it will be found.

If no \pdfmapfile primitive is given, the default map file pdftex.map will be read by pdfTEX.
Normally there is no need for a pdfTEX user to bother about the \pdfmapfile or \pdfmapline
primitives, as the main TEX distributions provide helper tools to automatically assemble the default
pdftex.map. (In TEX Live, these tools are updmap and updmap-sys.)

There is a companion primitive \pdfmapline that allows scanning single map lines; its map
line argument has the same syntax as the map lines from a map file. Both primitives can be used
concurrently. The \pdfmapfile primitive is fast for reading external bulk font map information
(many map lines collected in a map file), whereas the \pdfmapline allows putting the font map
information for individual TEX fonts directly in the TEX source or a style file. With both primitives,
the map line information is scanned by pdfTEX identically. In the most common case, the data are
put into a fresh internal map entry data structure, which is then consulted when a font is used.

When a \pdfmapfile or \pdfmapline primitive is executed by pdfTEX, the argument (map file
or map line) will be processed immediately, and the internal map entry database updated. The

35

operation mode of the \pdfmapfile and \pdfmapline primitives is selected by an optional modifier
character, one of +, =, -, in front of the {fmname field. This modifier defines how the individual
map lines are going to be handled, and how a collision between an already registered map entry and
a newer one is resolved: either by ignoring a later entry, or replacing or deleting an existing entry.
In any case, map entries of fonts already in use are kept untouched. Here are two examples:

\pdfmapfile{+myfont.map}
\pdfmapline{+ptmri8r Times-Italic <8r.enc <ptmri8a.pfb}

When no modifier character is given (e.g., \pdfmapfile{foo.map} or
\pdfmapline{helv Helvetica}) and there has been no previous call to one of these primitives,
then the default map file pdftex.map will not be read. Apart from this case, the given map file
will be processed as with the + modifier: duplicate later map entries within the file are ignored
and a warning is issued. Thus, you can block reading of the default map file also with an empty
\pdfmapfile{} or \pdfmapline{} early in the TEX file. Since the default map file is typically large,
if you don’t need it, these command variants might considerably speed up pdfTEX startup.

If a modifier is given, before reading the items given as arguments to the present \pdfmapfile
or \pdfmapline, the default map file will be read first—if this hasn’t already been done or been
prevented by the above blocking cases. The meaning of the modifiers:

e \pdfmapfile{+foo.map} reads the file foo.map; duplicate later map entries within the file
are ignored and a warning is issued.

e \pdfmapfile{=foo.map} reads the file foo.map; matching map entries in the database are
replaced by new entries from foo.map, if they haven’t already been used.

e \pdfmapfile{-foo.map} reads the file foo.map; matching map entries are deleted from
the database, if they haven’t already been used.

In short, if you want to add support for a new font through an additional font map file while
keeping all the existing mappings, use \pdfmapfile{+myfont.map} or \pdfmapfile{=myfont.map}.

If you want to use a base map file name other than pdftex.map, or change its processing
options through a pdfTEX format, you can do this by appending the \pdfmapfile command to the
\everyjob token list for the -ini run, as in:

\everyjob=\expandafter{\the\everyjob\pdfmapfile{+myspecial .map}}
\dump

This would always read the file myspecial .map after the default pdftex.map file.

4.3.19 \pdfmapline
\pdfmapline (map spec)
Similar to \pdfmapfile, but here you give a single map line (exactly like the ones in map files)

as an argument. The optional modifiers (+-=) have the same effect as with \pdfmapfile; see also
the description above. Example:

\pdfmapline{+ptmri8r Times-Italic <8r.enc <ptmri8a.pfb}

This primitive, especially the \pdfmapline{=. ..} form, is useful for temporary quick checks of
a new font map entry during development, before finally putting it into a map file.

As explained above, \pdfmapline{}, like \pdfmapfile{}, blocks reading of the default map file,
if it comes early enough in the TEX input. The primitive was introduced in pdfTEX 1.20a.

36

4.3.20 \pdfmovechars
\pdfmovechars (integer)

Since pdfTEX version 1.30.0 the primitive \pdfmovechars is obsolete, and its use merely leads
to a warning. (This primitive specified whether pdfTEX should try to move characters in range 0..31
to higher slots; its sole purpose was to remedy certain bugs of early PDF viewers.)

4.3.21 \pdfnobuiltintounicode
\pdfnobuiltintounicode (font)

The purpose of this command is to prevent pdfTEX from generating the ToUnicode/CMap
resource for the given font when \pdfgentounicode=1, most likely because the CMap resource is
already generated by some other method. For instance, the A TEX cmap package uses \pdffontattr
to generate CMap resources.

Minimal example:

\font\f=cmb10
\pdfnobuiltintounicode\f
\f No unicode mappings for this output.

The primitive was introduced in pdfTEX 1.40.11.

4.3.22 \pdfnoligatures
\pdfnoligatures (font)

This disables all ligatures in the loaded font (font). The primitive was introduced in pdfTEX
1.30.0.

4.3.23 \pdfomitcharset
\pdfomitcharset (integer)

If this primitive parameter is zero (the default), the /CharSet entry is included as usual for
fonts in the PDF output; if it is set to 1, then /CharSet is omitted. Other values may have other
meanings in the future, so do not rely on them.

Explanation: This parameter was created because the PDF /A-1 standard requires /CharSet,
whereas PDF /A-2 and PDF/A-3 allow it to be omitted but have extraordinary requirements, which
pdfTEX does not currently meet, if it is included.The primitive was introduced in pdfTEX 1.40.20.

4.3.24 \pdfpkmode
\pdfpkmode (tokens)

The \pdfpkmode is a token register that sets the METAFONT mode for pixel font generation.
The contents of this register is dumped into the format, so one can (optionally) preset it. The
primitive was introduced in pdfTEX 1.30.0.

4.3.25 \pdfpkresolution
\pdfpkresolution (integer)

This integer parameter specifies the default resolution of embedded PK fonts and is read when
pdfTEX embeds a PK font during finishing the PDF output. As bitmap fonts may be rendered
poorly, and in any case cannot be arbitrarily magnified, it is best to use outline fonts if possible.

37

4.3.26 \pdfsuppresswarningdupmap
\pdfsuppresswarningdupmap (integer)

Ordinarily, pdfTEX gives a warning when a duplicate map entry for a given font is read, whatever
the mechanism. However, sometimes it is useful to include map information within the document,
using \pdfmapfile or \pdfmapline, even for fonts that happen to be installed on the system. Then
seeing the warnings on every run is just noise; it can be suppressed by setting this parameter to a
positive number. The primitive was introduced in pdfTEX 1.40.13.

4.3.27 \pdftracingfonts
\pdftracingfonts (integer)

This integer parameter specifies the level of verbosity for the information about expanded fonts
given in the log, e.g., when \tracingoutput=1. If \pdftracingfonts=0, which is the default, the
log shows the actual nonzero signed expansion value for each expanded letter within brackets, as in:

o \xivet (+20) t
If \pdftracingfonts=1, the name of the TFM file is also listed, together with the font size:
... \xivtt (cmtt10+200@14.0pt) t

Setting \pdftracingfonts to a value other than 0 or 1 is not recommended, to allow for future
extensions. The primitive was introduced in pdfTEX 1.30.0.

4.3.28 \pdfuniqueresname
\pdfuniqueresname (integer)

When this primitive is assigned a positive number, PDF resource names will be made reasonably
unique by appending a random string consisting of six ASCII characters.

4.3.29 \tagcode
\tagcode (font) (8-bit number) (integer)

This primitive accesses a character’s char_tag info. It is meant to delete 1ig_tag (the charac-
ter’s ligature /kerning program), list_tag (which indicates that the character belongs to a chain of
ascending sizes) and/or ext_tag (which indicates that the character is extensible), with the follow-
ing options: assigning -7 or less clears all tags, -6 clears ext_tag and list_tag, -5 clears ext_tag
and lig_tag, -4 clears ext_tag, -3 clears 1list_tag and lig_tag, -2 clears list_tag, -1 clears
lig_tag, and O or larger does nothing. Changes are irreversible and global.

Conversely, when queried, the primitive returns 0 if the tag’s value is no_tag, 1 if lig_tag is
set, 2 if 1ist_tag is set or 4 (not 3) if ext_tag is set.

4.4 Spacing

Controlling spacing before and after characters was introduced in version 1.30, mostly to handle
punctuation rules in different languages. The \...code tables here, like those in the previous
section, operate globally, i.e., ignore TEX’s usual grouping, and apply only to the given (font), not
other instances of the underlying font.

38

4.4.1 \pdfadjustinterwordglue
\pdfadjustinterwordglue (integer)

If positive, adjustment of interword glue is enabled and controlled by the following three primi-
tives.

4.4.2 \knbscode
\knbscode (font) (8-bit number) (integer)

The amount of space, in thousandths of an em, added to the natural width of the glue following
a character (the name stands for “kern before space”, although technically it is looking at glue items,
not kern items). This amounts is clipped to the range —1000..1000. For instance, in the following
example, glue after periods in the current font will be increased by .2em.

\pdfadjustinterwordglue=1
\knsbcode\font ‘\.=200

4.4.3 \stbscode
\stbscode (font) (8-bit number) (integer)
This works like \knbscode, but applies to the stretch component of the following glue.

4.4.4 \shbscode
\shbscode (font) (8-bit number) (integer)
Like \stbscode, but for the shrink component.

4.4.5 \pdfprependkern
\pdfprependkern (integer)

If positive, automatic insertion of kerns before characters is enabled.

4.4.6 \knbccode
\knbccode (font) (8-bit number) (integer)

The width of the kern, in thousandths of an em, inserted before a character. It is clipped to the
range —1000..1000. For instance, with the following code, a .15em-kern will be inserted before all
question marks in the current font (possibly useful for e.g., French punctuation):

\pdfprependkern=1
\knbccode\font ‘\?7=150

4.4.7 \pdfappendkern
\pdfappendkern (integer)

Same as \pdfprependkern, but for kerns inserted after characters.

4.4.8 \knaccode
\knaccode (font) (8-bit number) (integer)

Same as \knbccode, except the kern is inserted after the character. Such a kern is required for
instance after a left guillemet in French punctuation.

39

4.5 Vertical adjustments

4.5.1 \pdfignoreddimen
\pdfignoreddimen (dimen)

This specifies the dimension value which must be assigned to the following four primitives so
they are ignored. Default is -1000pt, and it should be modified with care since it also influences
when a previous paragraph’s depth is ignored (for instance, the plain TEX macro \nointerlineskip
should be modified accordingly).

4.5.2 \pdffirstlineheight, \pdflastlinedepth

\pdffirstlineheight (dimen)
\pdflastlinedepth (dimen)

These parameters specify the height of the first, resp. depth of the last, line of a paragraph,
regardless of its content. They are read when the paragraph builder is called, and ignored when set
to \pdfignoreddimen. By default, they are set to -1000pt, so they are ignored as long as the value
of \pdfignoreddimen is not changed.

4.5.3 \pdfeachlineheight, \pdfeachlinedepth

\pdfeachlineheight (dimen)
\pdfeachlinedepth (dimen)

\pdfeachlineheight is similar to \pdffirstlineheight, but for all lines of a paragraph, in-
cluding the first one, unless \pdffirstlineheight is specified.

\pdfeachlinedepth is the same, but for the depth.

4.6 PDF objects

4.6.1 \pdfobj
\pdfobj (object type spec) (h, v, m)

This command creates a raw PDF object that is written to the PDF file as 1 0 obj ... endobj.

When (object type spec) is not given, pdfTEX no longer creates a dictionary object with contents
(general text), as it did in the past.

When (object type spec) is given as (attr spec) stream, the object will be created as a stream
with contents (general text) and additional attributes in (attr spec).

When (object type spec) is given as (attr spec) file, then the (general text) will be treated as
a file name and its contents will be copied into the stream contents.

When (object type spec) is given as reserveobjnum, just a new object number is reserved. The
number of the reserved object is accessible via \pdflastobj. The object can later be filled with
contents by \pdfobj useobjnum (number) {(balanced text)}, but the reserved object number can
be used by other objects before it is defined, providing a forward-referencing mechanism.

The object is kept in memory and will be written to the PDF output only when its number is
referred to by \pdfrefobj or when \pdfobj is preceded by \immediate. Nothing is appended to
the list being built. The number of the most recently created object is accessible via \pdflastobj.

4.6.2 \pdflastobj
\pdflastobj (read-only integer)
This command returns the object number of the last object created by \pdfobj.

40

4.6.3 \pdfrefobj
\pdfrefobj (object number) (h, v, m)

This command appends a whatsit item to the list being built. When the whatsit is searched at
shipout time, pdfTEX will write the object (object number) to the PDF output if it has not been
written yet.

4.6.4 \pdfretval
\pdfretval (read-only integer)

Set to —1 if \pdfobj ignores an invalid object number. Perhaps this will be used to store the
error status of other primitives in the future.

4.7 Page and pages objects

4.7.1 \pdfpagesattr
\pdfpagesattr (tokens)

pdfTEX expands this token list when it finishes the PDF output and adds the resulting character
stream to the root Pages object. When defined, these are applied to all pages in the document.
Some examples of attributes are /CropBox, the rectangle specifying the region of the page being
displayed and printed, and /Rotate, the number of degrees (in multiples of 90) the page should be
rotated clockwise when it is displayed or printed.

\pdfpagesattr
{ /Rotate 90 % rotate all pages by 90 degrees
/CropBox [0 0 612 792] } ¥ the crop size of all pages (in bp)

4.7.2 \pdfpageattr
\pdfpageattr (tokens)

This is similar to \pdfpagesattr, but has priority over it. It can be used to override any
attribute given by \pdfpagesattr for an individual page. The token list is expanded when pdfTEX
ships out a page. The contents are added to the attributes of the current page.

If the \pdfpageattr value contains the string /MediaBox, then pdfTEX omits outputting its own
/MediaBox value (which is [0 O (page width) (page height)1). (This behavior was introduced in
version 1.40.18.)

4.7.3 \pdfomitprocset
\pdfomitprocset (integer)

If this parameter is zero (the default), the /ProcSet array is included if \pdfmajorversion is 1,
and omitted if \pdfmajorversion > 2. If this parameter is > 0, /ProcSet is always omitted; if it is
< 0, /ProcSet is always included. For information about what /ProcSet is, see the PDF reference
manual or other documentation.

\ProcSet was considered obsolete as of PDF 1.4, but conforming writers should continue to
output it. It was formally deprecated in PDF 2.0.The primitive was introduced in pdfTEpX 1.40.25.

41

4.7.4 \pdfpageref
\pdfpageref (page number) (expandable)

This primitive expands to the number of the page object that contains the dictionary for page
(page number). If the page (page number) does not exist, a warning will be issued, a fresh unused
PDF object will be generated, and \pdfpageref will expand to that object number.

E.g., if the dictionary for page 5 of the TEX document is contained in PDF object no. 18,
\pdfpagerefb expands to the number 18.

4.7.5 \pdfpageresources
\pdfpageresources (tokens)

These tokens are added to the resource dictionary for all pages, before the font, XObject, and
ProcSet resources. For example:

\pdfpageresources{/MyPageResourceAttribute /MyValue}

4.8 Form XObjects

The next three primitives support a PDF feature called “object reuse” in pdfTgX. The idea is first to
create a ‘form XObject’. The content of this object corresponds to the content of a TEX box; it can
contain pictures and references to other form XObjects as well. After creation, the form XObject
can be used multiple times by simply referring to its object number. This feature can be useful for
large documents with many similar elements, to reduce the duplication of identical objects.

These commands behave similarly to \pdfobj, \pdfrefobj and \pdflastobj (described in the
previous section), but instead of taking raw PDF code, they handle text typeset by TEX.

4.8.1 \pdfxform
\pdfxform [(attr spec)] [(resources spec)]| (box number) (h, v, m)

(attr spec) — attr (general text)
(resources spec) — resources (general text)

This command creates a form XObject corresponding to the contents of the box (box number).
The box can contain other raw objects, form XObjects, or images as well. However, it cannot
contain annotations because those are laid out on a separate layer, are positioned absolutely, and
have dedicated housekeeping. \pdfxform makes box (box number) void, as \box does.

When (attr spec) is given, the text will be written as an additional attribute into the form
XObject dictionary. A (resources spec) is similar, but the text will be added to the resources
dictionary of the form XObject. The text given by (attr spec) or (resources spec) is written before
other entries of the form dictionary and/or the resources dictionary and takes priority over later
ones.

4.8.2 \pdfrefxform
\pdfrefxform (object number) (h, v, m)

The form XObject is kept in memory and will be written to the PDF output only when its object
number is referred to by \pdfrefxform or when \pdfxform is preceded by \immediate. Nothing
is appended to the list being built. The number of the most recently created form XObject is
accessible via \pdflastxform.

42

When issued, \pdfrefxform appends a whatsit item to the list being built. When the whatsit
item is searched at shipout time, pdfTEX will write the form (object number) to the PDF output if
it is not written yet.

4.8.3 \pdflastxform
\pdflastxform (read-only integer)

The object number of the most recently created form XObject is accessible via \pdflastxform.

As said, this feature can be used for reusing information. This mechanism also plays a role in
typesetting fill-in forms. Such widgets sometimes have visuals that show up on user request, but
are hidden otherwise.

4.8.4 \pdfxformname
\pdfxformname (object number) (expandable)

In PDF files produced by pdfTEX one can recognize a form XObject by the prefix /Fm followed
by a number, for instance /Fm2. For a given form XObject number, this primitive expands to the
number in the corresponding form XObject name. E.g., if /Fm2 corresponds to some form XObject
with object number 7, the \pdfxformname7 expands to the number 2. The primitive was introduced

in pdfTEX 1.30.0.

4.9 Graphics inclusion

PDF provides a mechanism for embedding graphic and textual objects: form XObjects. In pdfTEX
this mechanism is accessed by means of \pdfxform, \pdflastxform and \pdfrefxform (described
in the previous section). A special kind of XObject is bitmap graphics and for manipulating them
similar commands are provided.

Chapter 5 provides a few more details about graphics handling in pdfTEX.

4.9.1 \pdfximage
\pdfximage [(image attrs)] (general text) (h, v, m)

(image attrs) — [(rule spec) | [(attr spec)] [(page spec)] [(named spec) |
[(pdf box spec)] [(colorspace spec) |

(rule spec) — (width | height | depth) (dimen) [(rule spec)]

(attr spec) — attr (general text)

(page spec) — page (number)

(named spec) — named (general text)

(pdf box spec) — mediabox | cropbox | bleedbox | trimbox | artbox

(colorspace spec) — colorspace (number)

This command creates an image object from the filename given in (general text), i.e., enclosed
in braces.

The image type is specified by the extension of the given file name: .png stands for PNG image,
.jpg (or .jpeg) for JPEG, .jbig2 (preferred, but .jb2 works also) for JBIG2, and .pdf for PDF
file. However, after pdfTEX has opened the file, it checks the file type first by checking the magic
number at the file start, which gets precedence over the file name extension. This gives a certain
degree of fault tolerance, if the file name extension is incorrect.

The image is kept in memory when this command is executed. It is written to the PDF output
only 1) if the \pdfximage command is preceded by \immediate, or 2) when its number is referred
to by \pdfrefximage (q.v.).

43

\pdfximage: (rule spec) for image size

The dimensions of the image can be controlled via (rule spec). The default values are zero for depth
and ‘running” for height and width. If all of them are given, the image will be scaled to fit the
specified values. If some (but not all) are given, the rest will be set to a value corresponding to the
remaining ones so as to make the image size to yield the same proportion of width : (height+ depth)
as the original image size, where depth is treated as zero. If no (rule spec) is given then the image
will have its natural size.

An image inserted at its natural size often has a resolution of \pdfimageresolution (see below)
given in dots per inch in the output file. However, if an image contains metadata specifying the
image resolution, the image will be scaled accordingly—unless (as of pdfTEX 1.40.27, released in
2025) the embedded image metadata is patently incorrect, such as 1dpi x 1dpi, in which case pdfTEX
ignores the metadata and issues a warning. Otherwise the bogus data would typically lead to an
arithmetic overflow error from TEX.

The dimensions of an image can be accessed by using the \pdfrefximage command in a box
and checking the box’s dimensions:

\setbox0=\hbox{\pdfximage{somefile.png}\pdfrefximage\pdflastximage}
% now \wd0 and \htO are the natural size of the image.

\pdfximage: (attr spec) to add arbitrary PDF attributes

Similarly to \pdfxform, the optional text given by (attr spec) will be written as additional attributes
of the image before other keys of the image dictionary. When using this, be aware that slightly
different types of PDF objects are created while including PNG, JPEG, or JBIG2 bitmaps and PDF
images.

\pdfximage: page (number) for included page by number

If using a PDF or JBIG2 image, page (number) allows specifying which page of the document is
to be included; a (page spec) is irrelevant for the other two image formats. (page spec) is page
(number) to specify a page by number.

\pdfximage: named (dest) for included page by name
For PDF images, you may also reference a so-called “named destination” in the PDF file with named
{(destination name)}. Such named destinations are created by hyperref, for example.

\pdfximage: (pdf box spec) for final bounding box

Starting with pdfTEX 1.11, in the PDF image case, you can specify which page box of the image
is to be treated as a final bounding box. If (pdf box spec) is present, it overrides the default
behavior specified by the \pdfpagebox parameter, and is overridden in turn by the (obsolete)
\pdfforcepagebox parameter. This option is irrelevant for non-PDF inclusions.

\pdfximage: colorspace (objnumber)

Starting with pdfTEX 1.21, \pdfximage supports a colorspace keyword followed by an object
number, which should be a user-defined colorspace for the image being included. This is relevant
only for JPEG images. PNG images use RGB palettes, JBIG2 bi-tonal, and PDF images have self-

contained color space information.

44

4.9.2 \pdfrefximage
\pdfrefximage (object number)
\pdfrefximage appends a whatsit item to the list being built. When the whatsit item is searched

at shipout time, pdfTEX will write the image with number (object number) to the PDF output if
it has not been written yet.

4.9.3 \pdflastximage
\pdflastximage (read-only integer)
\pdflastximage is the number of the most recently created XObject image.

4.9.4 \pdfximagebbox
\pdfximagebbox (integer) (integer) (expandable)

The dimensions of the bounding box of a PDF image loaded with \pdfximage are stored in a
table. This primitive returns those dimensions as follows:

\pdfximage{afile.pdf}

\pdfximagebbox\pdflastximage 1 % Returns lower-left x
\pdfximagebbox\pdflastximage 2 % Returns lower-left y
\pdfximagebbox\pdflastximage 3) Returns upper-right x
\pdfximagebbox\pdflastximage 4 I Returns upper-right y

4.9.5 \pdflastximagecolordepth
\pdflastximagecolordepth (read-only integer)

The color depth (1 for 1-bit images, 2 for 2-bit images, and so on) of the last image accessed
with \pdfximage.

4.9.6 \pdflastximagepages
\pdflastximagepages (read-only integer)
This read-only register returns the highest page number from a file previously accessed via the

\pdfximage command. This is useful only for PDF files; it always returns 1 for PNG, JPEG, or
JBIG2 files.

4.9.7 \pdfimageresolution
\pdfimageresolution (integer)

The integer \pdfimageresolution parameter (given in dots per inch, dpi) is a last resort value,
used only for bitmap (JPEG, PNG, JBIG2) images, but not for PDFs. The priorities are as follows:
Often one image dimension (width or height) is stated explicitly in the TEX file. Then the image
is properly scaled so that the aspect ratio is kept. If both image dimensions are given, the image
will be stretched accordingly, whereby the aspect ratio might get distorted. If no image dimensions
are given in the TEX file, the image size will be calculated from its width and height in pixels, using
the z and y resolution values normally contained in the image file. If one of these resolution values
is missing or weird (either < 0 or > 65535), the \pdf imageresolution value will be used for both z
and y resolution when calculating the image size. And if the \pdfimageresolution is zero, a final
fallback resolution of 72dpi is used.

The \pdfimageresolution is read when pdfTEX creates an image via \pdfximage. The given
value is clipped to the range 0..65535 (dpi).

45

Currently this parameter is used particularly for calculating the dimensions of JPEG images
with EXIF information (unless at least one dimension is stated explicitly); the resolution values
included in EXIF data are ignored.

4.9.8 \pdfpagebox
\pdfpagebox (integer)

When PDF files are included, the command \pdfximage allows the selection of which PDF page
box to use in the optional (pdf box spec) argument. If that argument isn’t present in the command,
the page box defaults to the value of \pdfpagebox as follows: (1) media box, (2) crop box, (3) bleed
box, (4) trim box, and (5) artbox. If \pdfpagebox is not set, the default is the crop box.

4.9.9 \pdfforcepagebox
\pdfforcepagebox (integer)

The integer primitive \pdfforcepagebox allows globally overriding the choice of the page box
used with \pdfximage. It takes the same values as \pdfpagebox. The command is available
starting with pdfTEX 1.30.0, as a shortened synonym of obsolete \pdfoptionalwaysusepdfpagebox
instruction, but is itself now considered obsolete—a combination of \pdfpagebox and (pdf box spec)
is better.

4.9.10 \pdfinclusionerrorlevel

\pdfinclusionerrorlevel (integer)

This controls the behavior of pdfTEX when a PDF file is included which has a newer PDF version
than the one specified by \pdfmajorversion and \pdfminorversion. If \pdfinclusionerrorlevel
is set to 0 (the default), pdfTEX gives a warning; if 1, pdfTEX raises an error; if negative, no
diagnostic at all is given.

It was originally a shortened synonym of \pdfoptionpdfinclusionerrorlevel, which is now
obsolete. The primitive was introduced in pdfTEX 1.30.0.

4.9.11 \pdfimagehicolor
\pdfimagehicolor (integer)

This parameter, when set to 1, enables embedding of PNG images with 16 bit wide color channels
at their full color resolution. This embedding mode is defined only from PDF version 1.5 onwards, so
the \pdfimagehicolor functionality is automatically disabled in pdfTEX if \pdfminorversion < 5
and \pdfmajorversion = 1; in this case, each 16 bit color channel is reduced to a width of 8 bits by
stripping the lower 8 bits before embedding. The same stripping happens when \pdfimagehicolor
is set to 0. If \pdfmajorversion = 1 and \pdfminorversion > 5, or \pdfmajorversion > 2, the
default value of \pdfimagehicolor is 1.

If specified, the parameter must appear before any data is written to the PDF output. The
primitive was introduced in pdfTEX 1.30.0.

4.9.12 \pdfimageapplygamma
\pdf imageapplygamma (integer)

This primitive, when set to 1, enables gamma correction while embedding PNG images, taking
the value of the primitive \pdfgamma as well as the gamma value embedded in the PNG image into
account. When \pdfimageapplygamma is set to 0, no gamma correction is performed.

If specified, the parameter must appear before any data is written to the PDF output. The
primitive was introduced in pdfTEX 1.30.0.

46

4.9.13 \pdfgamma
\pdfgamma (integer)

This primitive defines the ‘device gamma’ for pdfTEX. Values are in promilles (same as \mag).
The default value of this primitive is 1000, defining a device gamma value of 1.0.

If \pdfimageapplygamma is set to 1, then whenever a PNG image is included, pdfTEX applies
a gamma correction. This correction is based on the value of the \pdfgamma primitive and the
‘assumed device gamma’ that is derived from the value embedded in the actual image. If no
embedded value can be found in the PNG image, then the value of \pdf imagegamma is used instead.

If specified, the parameter must appear before any data is written to the PDF output. The
primitive was introduced in pdfTEX 1.30.0.

4.9.14 \pdfimagegamma
\pdfimagegamma (integer)

This primitive gives a default ‘assumed gamma’ value for PNG images. Values are in promilles
(same as for \pdfamma). The default value of this primitive is 2200, implying an assumed gamma
value of 2.2.

When pdfTEX is applying gamma corrections, images that do not have an embedded ‘assumed
gamma’ value are assumed to have been created for a device with a gamma of 2.2. Experiments
show that this default setting is correct for a large number of images; however, if your images come
out too dark, you probably want to set \pdfimagegamma to a lower value, like 1000.

If specified, the parameter must appear before any data is written to the PDF output. The
primitive was introduced in pdfTEX 1.30.0.

4.9.15 \pdfpxdimen
\pdfpxdimen (dimen)

While working with bitmap graphics or typesetting electronic documents, it might be convenient
to base dimensions on pixels rather than TEX’s standard units like pt or em. For this purpose, pdfTEX
provides an extra unit named px that takes the dimension given to the \pdfpxdimen primitive. For

example, to make the unit px corresponding to 96dpi pixel density (then 1px = 72/96bp), one can
do the following calculation:

\pdfpxdimen=1in % 1 dpi
\divide\pdfpxdimen by 96 % 96 dpi
\hsize=1200px

Then \hsize amounts to 1200 pixels in 96dpi, which is exactly 903.375pt, which TEX rounds to
903.36914pt.

The default value of \pdfpxdimen is 1.00001bp (for historical reasons), corresponding to a pixel
density of (a few sp off from) 72dpi. The LuaTgX default is 1bp (also a few sp off from 72dpi), so
to get precisely the same behavior in pdfTEX and LuaTgX, set \pdfpxdimen=1bp.

This primitive is completely independent of the \pdfimageresolution and \pdfpkresolution
parameters.

The primitive was introduced in pdfTEX 1.30.0. It used to be an integer register that gave
the dimension 1px as number of scaled points, defaulting to 65536 (1px equal to 65536sp = 1pt).
Starting with pdfTEX 1.40.0, \pdfpxdimen is now a real dimension parameter.

47

4.9.16 \pdfinclusioncopyfonts
\pdfinclusioncopyfonts (integer)

If positive, this parameter tells pdfTEX to include fonts that are embedded in a PDF file loaded
with \pdfximage, even if those fonts are also available on disk. Bigger files might be created, but
included PDF files are sure to be embedded with the correct fonts; indeed, the fonts on disk might
be different from the embedded ones, and glyphs might be missing.

4.9.17 \pdfsuppresswarningpagegroup
\pdfsuppresswarningpagegroup (integer)

Ordinarily, pdfTEX gives a warning when more than one included PDF file has a so-called “page
group object” (/Group), because only one can “win”—that is, be propagated to the page level.
Usually the page groups are identical, but when they are not, the result is unpredictable. It would
be ideal if pdfTEX in fact detected whether the page groups were the same and only gave the warning
in the problematic case; unfortunately, this is not easy (a patch would be welcome). Nevertheless,
often one observes that there is no actual problem. Then seeing the warnings on every run is just
noise, and can be suppressed by setting this parameter to a positive number. The primitive was
introduced in pdfTEX 1.40.15.

4.10 Annotations

PDF 1.4 provides four basic kinds of annotations:

e hyperlinks, general navigation
e text clips (notes)
e movies

e sound fragments

The first type differs from the other three in that there is a designated area involved on which
one can click, or when moved over some action occurs. pdfTEX is able to calculate this area, as we
will see later. All annotations can be supported using the next two general annotation primitives.

4.10.1 \pdfannot
\pdfannot (annot type spec) (h, v, m)

annot type spec) — reserveobjnum
J
[useobjnum (number) | [(rule spec)] (general text)

This command appends a whatsit item corresponding to an annotation to the list being built.
The dimensions of the annotation can be controlled via the (rule spec). The default values are “run-
ning” for all width, height and depth. When an annotation is written out, running dimensions will
take the corresponding values from the box containing the whatsit item representing the annotation.
The (general text) is inserted as raw PDF code to the contents of annotation. The annotation is
written only if the corresponding whatsit item is searched at shipout time.

48

4.10.2 \pdflastannot
\pdflastannot (read-only integer)

This primitive returns the object number of the last annotation created by \pdfannot. These

two primitives allow users to create any annotation that cannot be created by \pdfstartlink (see
below).

4.11 Destinations and links

The first type of annotation (hyperlinks and navigation), mentioned above, is implemented by three
primitives. The first one is used to define a specific location as being referred to. This location
is tied to the page, not the exact location on the page. The main reason for this is that pdfTEX
maintains a dedicated list of these annotations, and more when optimized, for the sole purpose of
speed.

4.11.1 \pdfdest
\pdfdest (dest spec) (h, v, m)
(dest spec) — [struct (number)] ((numid) | (nameid)) (dest type)
(dest type) — xyz [zoom (number) |
| fitr (rule spec) | fit | fith | fitv | fitb | fitbh | fitbv
This primitive appends a whatsit item which establishes a destination for links and bookmark

outlines; the link is identified by either a number or a symbolic name, and the way the viewer is to
display the page is specified in (dest spec), as described in this table:

keyword meaning

struct [(number)] create structure destination (see below)
xyz [zoom (number)] goto the current position (see below)
fitr (rule spec) fit according to (rule spec)

fit fit the page in the window

fith fit the width of the page

fitv fit the height of the page

fitb fit the BoundingBox of the page

fitbh fit the width of BoundingBox of the page
fitbv fit the height of BoundingBox of the page

If struct (number) is used, a structure destination is created instead of a regular destination,
referring to the structure element defined in object (number). Structure destinations use a separate
namespace and therefore may have the same identifiers as a regular destination.

The xyz keyword can optionally be followed by zoom (integer) to provide a fixed zoom-in. The
(integer) is used like a TEX magnification value, i.e., 1000 is the normal page view. When zoom
(integer) is given, the zoom factor changes to 0.001 of the (integer) value, otherwise the current
zoom factor is kept unchanged.

The destination is written out only if the corresponding whatsit item is searched at shipout.

49

4.11.2 \pdfstartlink
\pdfstartlink [(rule spec)]| [(attr spec)] (action spec) (h, m)
(rule spec) — (width | height | depth) (dimen) [(rule spec)]
(attr spec) — attr (general text)
(action spec) — user (user-action spec)

| goto (goto-action spec)

| thread (thread-action spec)

(The syntax for the three (action-spec)s are given in the subsections below.)
General points about PDF links:

e An invocation of \pdfstartlink must be terminated by \pdfendlink.

e \pdfstartlink inserts a whatsit item corresponding to the start of a hyperlink. Another
whatsit representing the end of the hyperlink is inserted by \pdfendlink.

e A \pdfstartlink and its corresponding \pdfendlink must be at the same level of box
nesting.

e The hyperlink is written to the final output only if the corresponding whatsit is searched
at shipout time.

e A hyperlink with running width can be multi-line or even multi-page, in which case all
horizontal boxes at the same nesting level as the boxes containing \pdfstartlink and
\pdfendlink will be treated as part of the hyperlink.

e While all graphics and text in a PDF document have relative positions, annotations have
internally hard-coded absolute positions. Again, this is for the sake of speed optimization.
The main disadvantage is that these annotations do not obey transformations issued by
\pdfliteral.

e The (action spec) specifies the action that should be performed when the hyperlink is
activated. The data inside an (action spec) is typically PostScript dictionaries and variable
settings, as defined by the PDF reference manual.

\pdfstartlink: (rule spec) for link dimensions

The dimensions of the link are handled in the same way as \pdfannot (p. 48), including using the
(rule spec) if specified.

\pdfstartlink: (attr spec) for link attributes

The (attr spec) allows specifying numerous additional attributes for the link, which are explained in
the PDF reference manual, and won’t be repeated here. Typically, the attributes specify the color
and thickness of any border around the link. As a basic example:

attr{/C [0.9 0 0] /Border [0 O 2]}

specifies a color (in RGB) of dark red, and a border thickness of 2 (PostScript) points.

50

\pdfstartlink: user (user-action spec) for user-defined actions

(user-action spec) — (general text)

A (user-action spec) (user{...}) performs a user-defined action, such as opening a url, whether
in the current or another document; see the “Actions” section in the PDF reference manual, §12.6.
Here’s an example for making a link to an external url:

\pdfstartlink
attr{/Border [0 0 0]}
user{/Subtype /Link
/A << /S /URI /URI (https://tug.org/) >>}%
TUG home page%
\pdfendlink

The /Border value in the attr line eliminates the box around the link displayed by viewers by
default.

\pdfstartlink: goto (goto-action spec) for jump actions

(goto-action spec) — [(goto-action struct spec)] (numid)
| [(file spec)] [(goto-action struct spec)] (nameid)
| [(file spec) | [(goto-action struct spec)| [(page spec)] (general text)
| (file spec) [(goto-action struct spec) |
[(nameid) | (page spec) (general text) |
(newwindow spec)
(goto-action struct spec) — struct ((numid) | (nameid) | (general text))
(newwindow spec) — newwindow | nonewwindow
(file spec) — file (general text)
(numid) — num (number)
(nameid) — name (general text)
(page spec) — page (number)
A (goto-action spec) (goto...) performs various goto actions, and is by far the most complex
action.

e The (numid) and (nameid) alternatives (the first two) specify a destination identifier in
the current or given file.

e The (page spec) (third) alternative specifies a page number for the destination. Here, the
final (general text) defines the zoom factor.

e If the initial (file spec) is given, the destination refers to that file. The (file spec) is required
if the (newwindow spec) is given, which specifies whether or not the file should be opened
in a new window (the default is browser-dependent). A (file spec) can be either a ({string))
or a <<(dictionary)>>.

e If a (goto-action spec) contains a (goto-action struct spec) (struct...), then a structure
destination is referenced in addition to the regular destination. The form with (general
text) is used if and only if the initial (file spec) is present; then the (general text) should
expand to a literal PDF dictionary describing a structure destination. Otherwise, the
(numid) or (nameid) directly after the struct keyword identify a destination which must
have been created with \pdfdest struct.

51

\pdfstartlink: thread (thread-action spec) for article threads

(thread-action spec) — [(file spec)] (numid) | [(file spec)] (nameid)

A (thread-action spec) (thread...) performs article thread reading. The thread identifier,
(numid) or (nameid), is analogous to the destination identifier described above. A thread in another
PDF file can be referenced by specifying a (file spec).

4.11.3 \pdfendlink
\pdfendlink (h, m)
This primitive ends a link started with \pdfstartlink. All text between \pdfstartlink and

\pdfendlink will be treated as part of this link. pdfTEX may break the result across lines (or
pages), in which case it will make several links with the same content.

4.11.4 \pdflastlink
\pdflastlink (read-only integer)

This primitive returns the object number of the last link created by \pdfstartlink (analogous
to \pdflastannot). The primitive was introduced in pdfTEX 1.40.0.

4.11.5 \pdflinkmargin
\pdflinkmargin (dimen)

This dimension parameter specifies the margin of the box representing a hyperlink and is read
when a page containing hyperlinks is shipped out.

4.11.6 \pdfdestmargin
\pdfdestmargin (dimen)

Margin added to the dimensions of the rectangle around the destinations.

4.11.7 \pdfsuppresswarningdupdest
\pdfsuppresswarningdupdest (integer)

Ordinarily, pdfTEX gives a warning when the same destination is used more than once. However,
due to problematic macro packages, sometimes a document may end up producing the warning
through no fault of its own, and fixing the macros may not be feasible. Then seeing the warnings
on every run is just noise, and can be suppressed by setting this parameter to a positive number.
The primitive was introduced in pdfTEX 1.40.13.

4.11.8 \pdfrunninglinkon, \pdfrunninglinkoff

\pdfrunninglinkoff
\pdfrunninglinkon

These commands create corresponding whatsit items which turn off/on generation of running
links. Their typical usage is to turn off generation of running links in the header or footer of a page.
Generation of running links is on when the shipout routine begins.

The generation of running links works roughly like this: pdfTEX keeps a stack of links created
by \pdfstartlink, called pdf _link_stack. When writing out an hbox to PDF, pdfTEX checks if
the nesting level of the box is the same as the nesting level of the top entry in pdf_link_stack; if
so, that box would become a link, too.

52

The whatsit items created by the above primitives turn off /on a flag which controls if a hbox
being shipped can become a link, in addition to the previous condition.
Thus, the commands must be inserted before the hbox in question. For example:

% (1) good:
\hbox{\pdfrunninglinkoff

\hbox{text that would become a link otherwise}
}

% (2) bad:
\hbox{\pdfrunninglinkoff text that would become a link otherwise}
% too late; \pdfrunninglinkoff must be inserted before the box

4.12 Bookmarks

4.12.1 \pdfoutline
\pdfoutline [(attr spec)] (action spec) [count (integer)] (general text) (h, v, m)

This primitive creates an outline (or bookmark) entry. The first parameter, (attr spec), specifies
the action to be taken, and is the same as that allowed for \pdfstartlink.

The count (integer) specifies the number of direct subentries under this entry; specify 0 or omit
the clause if this entry has no subentries. If the (integer) is negative, then all subentries will be
closed and the absolute value of this number specifies the number of subentries.

The (general text) is what will be shown in the outline window. The outline is written to the
PDF output immediately.

4.13 Article threads

4.13.1 \pdfthread
\pdfthread [(rule spec)] [(attr spec)] (id spec) (h, v, m)

Defines a bead within an article thread. Thread beads with same identifiers (spread across the
document) will be joined together.

4.13.2 \pdfstartthread
\pdftstartthread [(rule spec)] [(attr spec)] (id spec) (v, m)

This uses the same syntax as \pdfthread, apart that it must be followed by a \pdfendthread.
\pdfstartthread and the corresponding \pdfendthread must end up in vboxes with the same
nesting level; all vboxes between them will be added into the thread.

In the output routine, if there are other newly created boxes which have the same nesting level
as the vbox(es) containing \pdfstartthread and \pdfendthread, they will be also added into the
thread, which is probably not what you want. To avoid such undesired behavior, it’s often enough
to wrap boxes that shouldn’t belong to the thread by a box to change their box nesting level.

4.13.3 \pdfendthread
\pdfendthread (v, m)
This ends an article thread started before by \pdfstartthread.

93

4.13.4 \pdfthreadmargin
\pdfthreadmargin (dimen)

Specifies a margin to be added to the dimensions of a bead within an article thread.

4.14 Literals and specials

4.14.1 \pdfliteral
\pdfliteral [shipout] [direct | page]| (general text) (h, v, m)

Analogous to \special in the original TEX, this command inserts raw PDF code into the
output, appending a whatsit item to the list being built. This allows support of color and text
transformation, among other things.

By default, (general text) is expanded immediately, when the whatsit item is created, as with
\special. Starting with pdfTEX 1.40.25, the optional keyword shipout can be used to delay
expansion of (general text) until the whatsit item is shipped out, as with non-\immediate \write.

Normally, pdfTEX ends a text section in the PDF output and sets the transformation matrix to
the current location on the page before inserting (general text); this can be turned off by giving the
optional keyword direct.

Starting with version 1.30.0, pdfTEX supports the keyword page in addition to direct. Both
modify the default behavior of \pdfliteral, avoiding translation of the coordinate space before
inserting the literal code. The difference is that the page keyword instructs pdfTEX to close a
BT...ET text block before inserting anything. This means that the literal code inserted refers to
the PDF origin (lower-left corner of the page) and can be safely enclosed with q...Q. In contrast,
using q. . .Q operators inside \pdfliteral with the direct keyword will produce corrupted PDF
output, as the PDF standard doesn’t allow doing anything like this within a BT...ET block.

4.14.2 \special
\special {pdf: (text)}
This is equivalent to \pdfliteral {(text)}.

4.14.3 \special direct
\special {pdf:direct: (text)}
This is equivalent to \pdfliteral direct {(text)}.

4.14.4 \special page
\special {pdf:page: (text)}
This is equivalent to \pdfliteral page {(text)}.

4.14.5 \special shipout
\special [shipout] {(text)}

Starting with version 1.40.25, pdfTEX extends the \special primitive to support the optional
keyword shipout. This delays expansion of (text) until the page is shipped out, as with a non-
\immediate \write. By default, (text) is expanded immediately.

\special shipout {pdf: (text)} is equivalent to \pdfliteral shipout {(text)}.

54

4.15 Strings

4.15.1 \pdfescapestring
\pdfescapestring (general text) (expandable)

Starting with version 1.30.0, pdfTEX provides a mechanism for converting a general text into
PDF string. Many characters that may be needed inside such a text (notably parentheses), have
a special meaning inside a PDF string object and thus, can’t be used literally. The primitive
replaces each special PDF character by its literal representation by inserting a backslash before
that character. Some characters (e.g., space) are also converted into 3-digit octal number. For
example, \pdfescapestring{Text (1)} will be expanded to Text\040\ (1\). This ensures a literal
interpretation of the text by the PDF viewer. The primitive was introduced in pdfTEX 1.30.0.

4.15.2 \pdfescapename
\pdfescapename (general text) (expandable)

Analogous to \pdfescapestring, \pdfescapename replaces each special PDF character inside
the general text by its hexadecimal representation preceded by a # character. This ensures the
proper interpretation of the text if used as a PDF name object. In example, Text (1) will be
replaced by Text#20#281#29. The primitive was introduced in pdfTEX 1.30.0.

4.15.3 \pdfescapehex
\pdfescapehex (general text) (expandable)

This command converts each character of (general text) into its hexadecimal representation.
Each character of the argument becomes a pair of hexadecimal digits. The primitive was introduced

in pdfTEX 1.30.0.

4.15.4 \pdfunescapehex
\pdfunescapehex (general text) (expandable)

This command treats each character pair of (general text) as a hexadecimal number and returns
the corresponding characters. The primitive was introduced in pdfTEX 1.30.0.

4.15.5 \pdfstrcmp
\pdfstrcmp (general text) (general text) (expandable)

This command compares two strings and expands to 0 if the strings are equal, to -1 if the first
string ranks before the second, and to 1 otherwise. The primitive was introduced in pdfTEX 1.30.0.

4.15.6 \pdfmatch
\pdfmatch [icase] [subcount (integer)| (general text) (general text) (expandable)

This command implements pattern matching, using POSIX extended regular expression syntax.
The first (general text) is a pattern and the second is a string. The command expands to -1 if the
pattern is invalid, to O if no match is found, and to 1 if a match is found. With the icase option,
the matching is case-insensitive. The subcount option sets the size of the table storing the found
(sub)patterns; its default is 10. The primitive was introduced in pdfTEX 1.30.0.

95

4.15.7 \pdflastmatch
\pdflastmatch (integer) (expandable)

The matches found with \pdfmatch are stored in a table. This command returns the entry for
match (integer), in the format (position)->(string); (position) is the position of the match (starting
at zero) or -1 if no match was found, and (string) is the matched substring.

Entry 0 contains the match as a whole; the subsequent entries contain submatches corresponding
to the subpatterns, up to subcount-1.

If (integer) is less than zero, an error is given.

For instance:

\pdfmatch subcount 3 {ab(cd)*ef(gh) (ij)}{abefghij}
\pdflastmatchO % "O->abefghij"

\pdflastmatchl % "-1->"

\pdflastmatch2 % "4->gh"

\pdflastmatch3 % "-1->"

Entry 1 is empty because no match was found for cd, and entry 3 is empty because it exceeds
the table’s size as set by subcount. The primitive was introduced in pdfTEX 1.30.0.

4.16 Numbers

4.16.1 \ifpdfabsnum, \ifpdfabsdim

\ifpdfabsnum (expandable)
\ifpdfabsdim (expandable)

This conditional works like the standard \ifnum (resp. \ifdim), except that it compares absolute
values of numbers (dimensions). Although it seems to be a trivial shortcut for a couple of regular \if
tests, as primitives they are considerably simpler and faster to use. The primitive was introduced

in pdfTEX 1.40.0.

4.16.2 \pdfnormaldeviate

\pdfnormaldeviate (expandable)

Generate a normally-distributed random integer with a mean of 0 and standard deviation 65536.
That is, about 68% of the time, the result will be between —65536 and 65536 (one standard deviation
away from the mean). About 95% of results will be within two standard deviations, and 99.7% within
three. This primitive expands to a list of tokens. The primitive was introduced in pdfTEX 1.30.0.

4.16.3 \pdfuniformdeviate
\pdfuniformdeviate (number) (expandable)

Generate a uniformly-distributed random integer value between 0 (inclusive) and (number)
(exclusive). This primitive expands to a list of tokens. The primitive was introduced in pdfTEX
1.30.0.

4.16.4 \pdfrandomseed
\pdfrandomseed (read-only integer)

You can use \pdfrandomseed to query the current seed value, so you can e.g., write the value
to the log file. The initial value of the seed is derived from the system time, and is not more than
1000999999 (this ensures that the value can be used with commands like \count). The primitive
was introduced in pdfTEX 1.30.0.

56

4.16.5 \pdfsetrandomseed
\pdfsetrandomseed (number)

Set the random seed (\pdfrandomseed) to a specific value, allowing you to replay sequences of
semi-randoms at a later moment. The primitive was introduced in pdfTEX 1.30.0.

4.17 Timekeeping

4.17.1 \pdfelapsedtime
\pdfelapsedtime (read-only integer)

Return a number that represents the time elapsed from the moment of the start of the run. The
elapsed time is returned in ‘scaled seconds’, meaning seconds divided by 65536, e.g., pdfTEX has
run for 73583 ‘scaled seconds’ when this paragraph was typeset. The primitive will never return
a value greater than the highest number available in TEX: if the time exceeds 32767 seconds, the
constant value 23! — 1 will be returned. The primitive was introduced in pdfTEX 1.30.0.

4.17.2 \pdfresettimer
\pdfresettimer

Reset the internal timer so that \pdfelapsedtime starts returning the scaled seconds from 0
again. The primitive was introduced in pdfTEX 1.30.0.

4.18 Files

4.18.1 \pdffiledump
\pdffiledump [offset (integer)| [length (integer)]| (general text) (expandable)

Expands to the dump of the first length (integer) bytes of the file specified by (general text),
in uppercase hexadecimal format (same as \pdfescapehex), starting at offset offset (number), or
the beginning of the file if offset is zero or not specified. If length is not given, the default is zero,
so expands to nothing. Both (integer)s must be > 0. For example, the first ten bytes of the source
of this manual are 2520706466546558206D. The primitive was introduced in pdfTEX 1.30.0.

4.18.2 \pdffilesize
\pdffilesize (general text) (expandable)

Expands to the size of the file specified by (general text), e.g., 194191 for the source of this
manual. The primitive was introduced in pdfTEX 1.30.0.

4.18.3 \pdfmdfivesum file
\pdfmdfivesum [file] (general text) (expandable)

If the keyword file is given, expands to the MD5 checksum of the (general text) in up-
percase hexadecimal format (same as \pdfescapehex). Without file, expands to the MD5 of
the (general text) taken as a string. For example, the MD5 of the source for this manual is
3D9A4126F15498CCD45164E3762AA1FD. The primitive was introduced in pdfTEX 1.30.0.

o7

4.18.4 \pdffilemoddate
\pdffilemoddate (general text) (expandable)

Expands to the modification date of file specified by (general text), in the same format as for
\pdfcreationdate, e.g., D:20260216073300-0800" for the source of this manual. As of pdfTEX
1.40.20, if the SOURCE_DATE_EPOCH and FORCE_SOURCE_DATE environment variables are both set,
\pdffilemoddate returns a value in UTC, ending in Z. The primitive was introduced in pdfTEX
1.30.0.

4.18.5 \input
\input (general text) (expandable)

As of TEX Live 2020, the \input primitive in all TEX engines, including pdfTEX, now also accepts
a group-delimited filename argument, as a system-dependent extension, as in \input{foo.tex}.
The standard usage of \input with a space/token-delimited filename is completely unchanged.

This group-delimited argument was previously implemented in LuaTgX; now it is available in
all engines. ASCII double quote characters (") are removed from the filename, but it is otherwise
left unchanged after tokenization.

This extension is unlike most others in that it affects a primitive in standard TEX (\input),
rather than being related to a new primitive, command line option, etc. This is allowed because ad-
ditional methods of recognizing filenames are explicitly mentioned in tex.web as acceptable system-
dependent extensions.

Incidentally, this does not directly affect IATEX’s \input command, as that is a macro redefinition
of the standard \input primitive.

The primitive was introduced in pdfTEX 1.40.21.

4.19 Color stack

pdfTEX 1.40.0 introduced color stack support; more generally, stacks of any graphic state.

4.19.1 \pdfcolorstackinit
\pdfcolorstackinit [page] [direct] (general text) (expandable)

The primitive initializes a new graphic stack and returns its number. The optional page keyword
instructs pdfTEX to restore the graphic at the beginning of every new page. The optional direct
keyword has the same effect as for \pdfliteral primitive. The primitive was introduced in pdfTEX
1.40.0.

4.19.2 \pdfcolorstack
\pdfcolorstack (stack number) (stack action) (general text)

(stack action) — set | push | pop | current
The command operates on the stack of a given (stack number). If (stack action) is:

push: the new value in (general text) is inserted at the top of the graphic stack and becomes
the current stack value.

pop: the top value is removed from the stack and the new top value becomes the top of the
stack.

set: the current value is replaced with (general text), without changing the stack size.

o8

current: the current stack value is return without modifying the stack.

The primitive was introduced in pdfTEX 1.40.0.

4.20 Transformations

Since the content of \pdfliteral is not interpreted, any transformation inserted directly into the
content stream, as well as saving and restoring the current transformation matrix, will be unnoticed
by pdfTEX’s positioning mechanism. As a consequence, links and other annotations (that are
formed in PDF on a different layer then the page content) are not affected by such user-defined
transformations. pdfTEX 1.40.0 solves this problem with three new primitives.

4.20.1 \pdfsetmatrix
\pdfsetmatrix

Affine transformations are normally expressed with six numbers. The first four (no unit) values
defining scaling, rotating and skewing, plus two extra dimensions for translation (shifting). Since
translation is handled by TEX itself, the \pdfsetmatrix primitive expects as an argument a string
containing just the first four numbers of the transformation separated by a space and assumes the
two position coordinates to be 0.

For example, \pdfsetmatrix{0.87 -0.5 0.5 0.87} rotates the current space by 30 degrees,
inserting 0.87 -0.5 0.5 0.87 0 O cm into the output. The primitive was introduced in pdfTEX
1.40.0.

4.20.2 \pdfsave
\pdfsave

The command saves the current transformation by inserting the q operator into the content
stream. The primitive was introduced in pdfTEX 1.40.0.

4.20.3 \pdfrestore
\pdfrestore

The command restores previously saved transformation by inserting the Q operator into the
content stream. \pdfsave and \pdfrestore pairs should always be properly nested and should
start and end at the same group level. The primitive was introduced in pdfTEX 1.40.0.

4.21 Macro programming

Expansion and other programming-related commands.

4.21.1 \expanded
\expanded (tokens) (expandable)

Expands (tokens) in exactly the same way as \message. In contrast to \edef, macro parameter
characters do not need to be doubled. \protected macros (q.v.) are not expanded. The primitive
was introduced in pdfTEX 1.40.20.

99

4.21.2 \ifincsname
\ifincsname (expandable)

This conditional is true if evaluated inside \csname ...\endcsname, and false otherwise.

4.21.3 \ifpdfprimitive
\ifpdfprimitive (control sequence) (expandable)

This conditional checks if the following control sequence has its primitive meaning. If so,
\ifpdfprimitive is true. In any other case (redefined, made \undefined, has never been primitive),
it is false. The primitive was introduced in pdfTEX 1.40.0.

4.21.4 \ignoreprimitiveerror
\ignoreprimitiveerror (integer)
If this primitive parameter is set to 1, the error
! Infinite glue shrinkage found in box being split
is changed from an error to a warning, and thus the exit status is not changed to failure.

Other values of \ignoreprimitiveerror are reserved for future use.
Here is a simple plain TEX example to provoke that error:

\ignoreprimitiveerror=1 % with this, get warning
\setbox0=\vbox{\hrule height 1pt \vskip Opt minus 1fill}
\setbox1=\vsplit0 to 5pt

\end

This parameter is defined only when the -etex option is given, like the standard e-TEX exten-
sions. This is the default configuration.
The primitive was introduced in pdfTEX 1.40.27.

4.21.5 \partokencontext
\partokencontext (number)

Let’s call par-token the token with the name given by \partokenname, which is \par by default
(see \partokenname, next). The par-token is inserted into the input stream in different places,
according to the \partokencontext value. This value can be:

0 (the default): par-token is inserted at empty lines (more exactly, when a token category 5 is
seen in state N, reading a line); before \end, \vskip, \hrule, \unvbox, and \halign, if TEX is in
horizontal mode when those commands are seen; and in various error recovery situations. These
are the standard cases in TEX.

1: par-token is inserted as above, and also at the end of \vbox, \vtop, and \vcenter, if TEX is
in horizontal mode at the time.

2: par-token is inserted as above, and also at the end of \insert, \vadjust, \output, \noalign,
and items of \valign, again if TEX is in horizontal mode at the time.

With the default \partokencontext=0, TEX behaves in its normal way, namely, the situations in
cases 1 and 2 are processed by a direct call of the end-paragraph routine, with no emitted par-token
and no way for macros to gain control.

If \partokencontext=1 then TEX inserts the par-token in additional cases: when vertical boxes
are completed but horizontal mode is not finished. Since vboxes are not uncommonly inserted
directly by users, with horizontal mode material, this allows macros to control all such boxes being
finished by a par-token. An example:

60

\partokenname_mypar
\partokencontext=1
\def_mypar{Hi there!\endgraf}
\vbox{Vbox text.}

This will output “Hi there!” after “Vbox text.”.

Finally, with \partokencontext=2, all cases where classical TEX uses the direct end-paragraph
routine are changed to emit the par-token instead. In contrast to case 1, these commands are rarely
invoked directly by users with horizontal mode material.

The setting of the register \partokencontext is local to the current group.

The primitive was introduced in pdfTEX 1.40.24.

4.21.6 \partokenname
\partokenname (control sequence)

TEX internally inserts a control sequence, named \par by default, into the input stream at empty
lines, the end of vboxes, and various other places (see \partokencontext, above). Let’s call this
control sequence the par-token.

Executing \partokenname(control sequence) changes the name of the par-token from \par to
the given (control sequence). The setting performed by \partokenname is global.

This makes it possible to release the name \par to the “user’s name space”. That is, after
using \partokenname, users can define and use \par as they wish without changing the behavior of
anything internal to TEX. For example:

\catcode‘_=11

\partokenname_mypar % use _mypar at user level
\let_mypar=\par % make _mypar equivalent to built-in \par
YA

\def\par{some random text} % redefine \par

YA

Hello world.

Goodbye.
\end

This will not output “some random text” (the definition of \par), due to the \partokenname
setting.

By default, the meaning of the par-token is to end a paragraph (also named as \endgraf in the
plain TEX format). It can be changed as usual with, for example, \def. Naturally, it is the control
sequence name given to \partokenname that must be redefined. Continuing the previous example
(prior to the \end):

\def_mypar{Hi there!\endgraf}
Paragraph one.

Paragraph two.\let_mypar=\endgraf

This will output “Hi there!” after “Paragraph one.”, before ending the paragraph.

Another behavior of the par-token built into TEX is that macros not defined as \long cause the
error “runaway argument” if the par-token is scanned as a parameter. After \setpartokenname,
it will be the new control sequence name that triggers this error, not \par. For instance (still
continuing the same example):

61

\def\amac#1{}
\amac{long test, no error: \par}
\amac{long test, gives error: _mypar}

The primitive was introduced in pdfTEX 1.40.24.

4.21.7 \pdfprimitive
\pdfprimitive (control sequence)

This command executes the primitive meaning of the following control sequence, regardless of
whether the control sequence has been redefined or made undefined. If the primitive was expandable,
\pdfprimitive expands also. On the other hand, if the following control sequence never was a
primitive, nothing happens and no error is raised. (In some versions of pdfTEX prior to 1.40.19, an
error was wrongly given.) The primitive was introduced in pdfTEX 1.40.0.

4.22 Typesetting

4.22.1 \pdfinsertht
\pdfinsertht (integer) (expandable)

If (integer) is the number of an insertion class, this command returns the current height of the
corresponding box. For instance, the following returns 12pt in plain TEX:

Abc\footnotex{Whatever.}\par
\pdfinsertht\footins

4.22.2 \pdflastxpos, \pdflastypos

\pdflastxpos (read-only integer)
\pdflastypos (read-only integer)

This primitive returns an integer number representing the absolute x resp. y coordinate of the
last point marked by \pdfsavepos. The unit is scaled points (sp).

4.22.3 \pdfsavepos
\pdfsavepos (h, v, m)

This primitive marks the current absolute (z,y) position on the media, with the reference point
in the lower left corner. It is active only during page shipout, when the final page is assembled.
The position coordinates can then be retrieved by the \pdflastxpos and \pdflastypos primitives,
and e.g., written out to some auxiliary file. The coordinates can be used only after the current
\shipout has been finalized, therefore normally two pdfTEX runs are required to utilize these
primitives. Starting with pdfTEX 1.40.0, this mechanism can also be used while running in DVI
mode.

4.22.4 \quitvmode
\quitvmode

The primitive instructs pdfTEX to quit vertical mode and start typesetting a paragraph. Thus,
\quitvmode has the same basic effect as the \leavevmode macro from plain.tex. However,
\leavevmode expands the \everypar token list, which may or may not be desired. \quitvmode
does not expand \everypar. The primitive was introduced in pdfTEX 1.21a.

62

4.22.5 \vadjust
\vadjust [(pre spec)] (filler) {(vertical mode material) } (h, m)

In pdfTEX, the \vadjust primitive supports an additional optional qualifier (pre spec), which
is simply the string pre, to the original TEX. If no pre is given, \vadjust behaves exactly as the
original (see The TgXbook, p. 281): it appends an adjustment item created from (vertical mode
material) to the current list after the line in which \vadjust appears. In contrast, with the qualifier
pre, the adjustment item is put before the line in which \vadjust pre appears.

4.23 Tracing

4.23.1 \showstream
\showstream (integer)

If this primitive parameter has a value corresponding to an open output stream (which has been
opened with \openout), then any \show, \showthe, \showbox or \showlists commands do not
write output to the terminal, but instead write only to the referenced output stream, as if they were
written with \immediate\write.

For example:

\newwrite\myoutstream

\immediate\openout\myoutstream="infofile"
\showstream=\myoutstream

% From now on, \show... commands are redirected to "infofile.tex".
\show\TeX

b

\showstream=-1

% -1 is never a open file and therefore restores

% normal \show... behavior.

\immediate\closeout\myoutstream

This example would not generate any special output to the terminal or log file (except for any
logging done by \newwrite. It writes this text to infofile.tex, including the initial blank line,
since that is what \show does:

> \TeX=macro:
->T\kern -.1667em\lower .5ex\hbox {E}\kern -.125emX

This primitive is available, with identical behavior, in all TEX engines except the original TEX
and e-TpX, where \showstream remains undefined. The primitive was introduced in pdfTEX 1.40.24.

4.23.2 \tracinglostchars
\tracinglostchars (integer)

This primitive parameter has always been part of TEX, and its operation with values < 2 is
unchanged. In addition, if its value is > 3, then “Missing character” reports become full errors
(ordinarily they are only logged), and the character code is reported in hex. For example:

\tracinglostchars=3
\font\x=logo1l0 \x \char99 \end

63

will result in this error message:
! Missing character: There is no c¢ ("63) in font logolO.

(The logo10 font only defines the capital letters used in the METAFONT and MetaPost logos, so
there is no lowercase.)

This new behavior is essentially the same in all TEX engines except the original TEX and e-TEX,
where the behavior of \tracinglostchars remains unchanged.

The primitive was introduced in pdfTEX 1.40.22.

4.23.3 \tracingstacklevels
\tracingstacklevels (integer)

If this primitive parameter is > 0, and \tracingmacros > 0, macro expansion logging is trun-
cated at the specified depth. Also, and more importantly, each relevant log line is given a prefix
beginning with ~, either followed by a . character for each expansion level or another ~ if the
expansion was truncated. For example:

\tracingmacros=1 % so macro expansion is logged at all
\tracingstacklevels=2 } cut off at level 2

\def\a#1{\relax} % argument to show parameter logging is affected too
\def\b#1{\a{#1}}

\b1

logs the following:

~\b #1->\a {#1}
#1<-1
“\a

Thus, the expansion of \b is logged normally, with the addition of the ~. prefix. The expansion
of \a is truncated (level 2), hence neither the parameters nor body expansion are shown.

Furthermore, an \input file counts as an expansion level, and the input filename is logged. So,
if we add this to our example above:

\input anotherfile

where anotherfile.tex simply contains \b2, the log will get:

~.INPUT anotherfile.tex
““\b
~\a

Now the \b expansion is not logged either, since the expansion depth is higher than the
\tracingstacklevels value.

The intended use of \tracingstacklevels is not so much to truncate logging as to indicate ex-
pansion levels for detailed debugging. Thus normally it would be set to a large number (\maxdimen),
so that everything is fully logged, with the addition of the expansion level indication with the number
of dots in the prefix.

This primitive is available, with identical behavior, in all TEX engines except the original TEX and
e-TEX, where \tracingstacklevels remains undefined. The primitive was introduced in pdfTEX
1.40.22.

64

4.24 pdfTEX execution environment

4.24.1 \pdfdraftmode
\pdfdraftmode (integer)

When set to 1 (or set by the command-line switch -draftmode), pdfTEX doesn’t write the output
PDF file and doesn’t read any images, but does do everything else (including writing auxiliary files),
thus speeding up compilations when you know you need an extra run but don’t care about the
output, e.g., just to get cross-references started. If specified, the parameter must appear before any
data is written to the PDF output. The primitive was introduced in pdfTEX 1.40.0.

4.24.2 \pdfshellescape
\pdfshellescape (read-only integer)

This primitive is 1 if \write18 is enabled, 2 if its operation is restricted to known-safe programs,
and 0 otherwise. The primitive was introduced in pdfTEX 1.30.0.

4.24.3 \pdftexbanner
\pdftexbanner (expandable)

Returns the pdfTEX banner message, e.g., for the version used here: This is pdfTeX, Version
3.141592653-2.6-1.40.29 (TeX Live 2026) kpathsea version 6.4.2. The primitive was in-
troduced in pdfTEX 1.20a.

4.24.4 \pdftexrevision
\pdftexrevision (expandable)

Returns the revision number of pdfTEX, e.g., for pdfTEX version 1.40.29 (used to produce this
document), it returns the number 29.

4.24.5 \pdftexversion
\pdftexversion (read-only integer)

Returns the version of pdfTEX multiplied by 100, excluding the tertiary version number, e.g.,
for pdfTEX version 1.40.29 (used to produce this document), it returns 140.

65

Chapter 5
Graphics

pdfTEX natively supports inclusion of pictures in PNG, JPEG, JBIG2, and PDF format; a few
differences between these are discussed below. Other formats, notably MetaPost, are supported
through TEX macros.

The historically common technique for including graphics with TEX, using EPS figures, is not
(and cannot be) supported; PDF inclusion is usually the easiest replacement, as described next.

5.1 PDF graphics

pdfTEX allows inserting selected pages from PDF files, carrying their own fonts, graphics, and pixel
images, into a document. The first figure in this manual (figure 1.2) is an example of such an insert,
being a one-page PDF document (uncompressed) generated by pdfTEX.

By default pdfTEX takes the BoundingBox of a PDF file from its CropBox if available, otherwise
from its MediaBox. This can be influenced by the (pdf box spec) option to the \pdfximage primitive,
or by setting the \pdfpagebox or \pdfforcepagebox primitives to a value corresponding to the
desired box type.

To get the right BoundingBox from a EPS file, before converting to PDF, it is necessary to
transform the EPS file so that the start point is at the (0,0) coordinate and the page size is set exactly
corresponding to the BoundingBox. A Perl script (epstopdf, https://ctan.org/pkg/epstopdf) is
available for this purpose; it can remove some garbage from input files, among other conveniences.
The PStoPDF program that comes with Ghostscript can do a similar job.

5.2 PNG graphics

The lossless compressing PNG format is useful for embedding crisp pixel graphics (e.g., line scans,
screenshots). As of pdfTEX 1.30.0, the alpha channel of PNG images is processed if available;
this allows embedding of images with simple transparency. The PNG format does not support the
CMYK color model, which is sometimes required for print media (this often can be replaced by
four component JPEG in high quality or lossless compression mode). Photos in PNG format have
rather poor compression; for that, JPEG format is preferable.

Embedding PNG images in the general case requires pdfTEX to uncompress the pixel array and
then re-compress it to the PDF format’s requirements; this can take a noticeable amount of time.
Since pdfTEX 1.30.0 there is also a fast PNG embedding mode that does not need uncompressing;:
the image data are directly copied into the PDF stream, resulting in a much higher embedding
speed. This direct-copy mode can only be used if the image array structure of the PNG file is
compatible with the PDF image structure; e.g., an interlaced PNG image requires uncompressing

66

https://ctan.org/pkg/epstopdf

to rearrange the image lines. The use of gamma correction also disables fast copying, as it requires
calculations with individual pixels.

Whether the fast copy mode is used for a PNG image can be seen from the log file, which then
shows the string ‘(PNG copy)’ after the PNG file name. Further, as of pdfTEX 1.40.29 (2026), if
the environment variable TEXMF_DEBUG_PNG_COPY is set to 1, pdfTEX reports various attributes of
each PNG image as well as whether it was copied. Thus it’s possible to discern why a given image
was not copied, and perhaps do mass conversions beforehand to speed up the pdfTEX run. See the
mailing list thread around https://tug.org/pipermail/tex-1live/2026-February/052105.html
for some conversion incantations and other PNG image attributes which prevent copying (some
keywords: RGBA, cHRM, bKGD, colortype 3 palettes).

5.3 JPEG graphics

The JPEG format is normally used in lossy mode; then it’s ideal for embedding photos. It’s not
recommended for crisp images from synthetic sources with a limited amount of colors. Both JFIF
and EXIF are supported for additional information.

5.4 JBIG2 graphics

The JBIG2 format works only for bi-tonal (black and white) pixel images like scanned line and text
documents, but for these it has typically a much higher compression ratio than the other two pixel
image formats. The JBIG2 format is part of the PDF standard since version 1.5; native JBIG2
image inclusion is available in pdfTEX since version 1.40.0.

A JBIG2 file might contain many images, which gives an even better compression ratio than
with a single image per file, as JBIG2 encoders can exploit similarities between bit patterns over
several images. Encoders for JBIG2 can operate in lossy as well as lossless modes.

A free JBIG2 encoder is available, https://github.com/agl/jbig2enc; perhaps there are oth-
ers.

5.5 MetaPost graphics

Although the output of MetaPost is PostScript, it is in a highly simplified form. Thus, TEX macros,
available as supp-pdf.tex and supp-pdf.mkii, have been written to read MetaPost output and
support all of its features. Thus, MetaPost output files can be read directly in TEX. A MetaPost
to PDF conversion script, mptopdf (https://ctan.org/pkg/mptopdf), is also available. All this
support is due to Hans Hagen and Tanmoy Bhattacharya.

5.6 TEX package graphics: picture mode, Xy-pic, tpic

Other options for graphics in pdfTEX:

IMTEX picture mode Since this is implemented in terms of font characters, it works in exactly
the same way as usual.

Xy-pic If the PostScript backend is not requested, Xy-pic uses its own Type 1 fonts, and needs
no special attention.

tpic The tpic \special commands (used in some macro packages) can be redefined to produce
literal PDF, using some macros written by Hans Hagen.

67

https://tug.org/pipermail/tex-live/2026-February/052105.html
https://github.com/agl/jbig2enc
https://ctan.org/pkg/mptopdf

5.7 PostScript graphics: Not supported, but convertable

The inclusion of raw PostScript commands, a technique utilized by, for instance, the pstricks
package, cannot be supported directly. Although PDF is a direct descendant of PostScript, it lacks
any programming language commands, and cannot deal with arbitrary PostScript.

Although PostScript graphics are not supported, when pdfIATEX tries to read an .eps file, by
default it automatically converts it to .pdf, using epstopdf. This is done by ITEX-specific macros,
not the pdfTEXengine.

68

Chapter 6

Additional PDF keys: PTEX. *

This section is based on the manual on keys written by Martin Schrider.

A PDF document should contain only the structures and attributes defined in the PDF specifi-
cation. However, the specification allows applications to insert additional keys, provided they follow
certain rules.

The most important rule is that developers have to register with Adobe prefixes for the keys
they want to insert. Hans Hagen has registered the prefix PTEX for pdfTEX.

pdfTEX generates an XObject for every included PDF image. The dictionary of this object
contains these additional keys:

key type meaning

PTEX.FileName string The name of the included file as seen by pdfTEX.
PTEX.InfoDict dictionary ~ The InfoDict of the included PDF (an indirect object).
PTEX.PageNumber integer The page number of the included file.

The PDF reference manual says: “Although viewer applications can store custom metadata
in the document information dictionary, it is inappropriate to store private content or structural
information there; such information should be stored in the document catalog instead.”

Although it would seem more natural to put this information in the document information
dictionary, we have to obey the rules laid down in the PDF reference manual. The following key
ends up in the document catalog.

key type meaning

PTEX.Fullbanner string The full version of the pdfTEX binary that produced the file as
displayed by pdftex --version, ak.a. \pdftexbanner (This is
pdfTeX, Version 3.141592653-2.6-1.40.29 (TeX Live 2026)
kpathsea version 6.4.2). This is necessary because the string
in the Producer key in the info dictionary is rather short, namely
pdfTeX-1.40.29.

Any or all of these keys can be suppressed with the \pdfsuppressptexinfo primitive, described
in section 4.2.

69

Chapter 7

Character translation: TCX

Characters that are input to pdfTEX are subject to optional TEX character translation (TCX) under
control of a TCX file. The TCX maps the input character codes (e.g., from \input or \read) to the
character codes as seen by pdfTEX. This mapping takes place before the characters enter pdfTEX’s
‘mouth’. If no TCX file is read, the input characters enter pdfTEX directly; no mapping is done.

TCX files consist of lines each containing one or two integer numbers in the range 0..255, either
in decimal or hex notation. A comment sign % in a TCX line starts a comment until the end of line.
The first number in each line is for matching the input character code, the second, optional number
is the corresponding TEX character code. If a line contains only one number, characters with this
code enter pdfTEX unchanged; no mapping is done.

TCX mapping also influences pdfTEX output streams for \message and \write. Without TCX
mapping, only characters that are within the range 32..126 are flagged as ‘printable’, meaning that
these characters are output directly by \message and \write primitives. Characters outside the
range 32..126 are instead output in escaped form, e.g., as ~~A for a character with code 0x01. When
a character code is mentioned in the 2nd column of the TCX file, or as the only value in a line,
it is flagged as ‘printable’. During \message and \write, output characters are mapped in reverse
direction: they are looked up in the 2nd column of the TCX file and the corresponding values from
the 1st column are output. Again, if a pdfTEX character code is found as the only number in a line,
no mapping is done. Mentioning a character code as the only number on a line has the sole purpose
to flag this code ‘printable’.

The characters output into the PDF file, e.g., by the \pdfliteral or \special primitives, are
not subject to TCX output remapping.

Beware: Character translation interferes with the encTEX primitives; to avoid surprises, don’t
use encTEX and TCX mapping at the same time. Further details about TCX file loading can be
found in the Web2C manual, https://tug.org/texinfohtml/web2c.html#TCX-files.

Nowadays TCX files are rarely used. The -8bit command line option makes all characters
printable, when that is desired.

70

https://tug.org/texinfohtml/web2c.html#TCX-files

Appendix A

Installation

This section describes the steps needed to get pdfTEX running on a system where pdfTEX is not yet
installed. Nowadays all known TEX distributions, such as TEX Live, MiKTEX, and MacTgX, include
pdfTEX already. For example, the TEX Live distribution comes with pdfTEX versions for many Unix,
Windows, and Mac systems; more information can be found at https://tug.org/texlive. When
you use any of these distributions, you don’t need to bother with the pdfTEX installation procedure
in this chapter.

If there is no precompiled pdfTEX binary for your system, or the version coming with a distri-
bution is not the current one and you would like to try out a fresh pdfTEX immediately, you will
need to build pdfTEX from sources; read on. You should already have a working TEX system, e.g.,
TEX Live, into which the freshly compiled pdfTEX will be integrated. (Numerous support files are
required in order to have a working binary.) Note that the installation description in this manual
is Web2C-specific.

A.1 Getting sources and binaries

The primary home page is https://www.pdftex.org, where you also find bug tracking information.
Development sources are at svn://tug.org/pdftex/branches/stable. Precompiled binaries for
some platforms are available in subdirectories below https://ctan.org/tex-archive/systems,
although these are unlikely to be up to date. Your best bet is to use a current TEX distribution.

A.2 Compiling

Given a directory where the sources have been downloaded or checked out, some working on a Unix
system the following steps are needed to compile pdfTEX:

cd source # from branches/stable!
./build-pdftex.sh

The binary pdftex will hopefully then end up in the subdirectory build-pdftex/texk/web2c.
The additional utilities pdftosrc and ttf2afm are in the pdfTEX source repository, but are not
built by default. If they are needed, edit build-pdftex.sh to --enable them.

For pdfTEX maintainers: a sibling script to build-pdftex.sh is in the repository, namely
sync-pdftex.sh, which syncs changes from a TEX Live source repository to a pdfTEX source repos-
itory. Read and understand the script before using it!

71

https://tug.org/texlive
https://www.pdftex.org
svn://tug.org/pdftex/branches/stable
https://ctan.org/tex-archive/systems

A.3 Placing files

The next step is to put the newly-compiled pdftex (and, if enabled, pdftosrc and/or ttf2afm)
binaries into the installed distribution. E.g., for a typical TEX Live system:
/usr/local/texlive/2026/bin/x86_64-1inux, replacing x86_64-1inux with the appropriate plat-
form name. (As always, it is sensible to rename the installed pdftex binary first and not just
overwrite it.)

If you’re doing this into a live hierarchy, run fmtutil-sys refresh afterwards, so that all
formats are regenerated system-wide with the new pdftex binary.

If what you want is to test a new version of pdftex, and not replace the installed version, the
best approach is to copy it into the binary directory as, say, pdftex.new. The different executable
name can sometimes change the files found and other behavior, but usually this won’t matter.

pdfTEX uses the Kpathsea library to search for supporting files; many variables and configuration
files can come into play. See the Kpathsea manual: https://tug.org/kpathsea.

A.4 Configuration of pdfTEX

As opposed to TEX with its DVI output, the pdfTEX program does not have a separate postprocess-
ing stage to transform the TEX input into final PDF. As a consequence, all data needed for building
the PDF must be available during the pdfTEX run, in particular information on media dimensions
and offsets, graphics files for embedding, and font information (font files, encodings).

When TgX builds a page, it places items relative to the (1in,lin) offset from the top left page
corner (the DVI reference point). Separate DVI postprocessors allow specifying the paper size (e.g.,
A4 or letter), so that this reference point is moved to the correct position on the paper, and the
text ends up at the right place.

In PDF, the paper dimensions are part of the page definition, and pdfTEX therefore requires
that they be defined at the beginning of the pdfTEX run. As with pages described by PostScript,
the PDF reference point is in the lower left corner.

Formerly, these dimensions and other pdfTEX parameters were read in from a configuration file
named pdftex.cfg, which had a special (non-TEX) format, at the start of processing. Nowadays
such a file is ignored by pdfTEX. Instead, the page dimensions and offsets, as well as many other
parameters, can be set by pdfTEX primitives during the pdfTEX format building process, so that
the settings are dumped into the fresh format and consequently will be used when pdfTEX is later
called with that format. All settings from the format can still be overridden during a pdfTEX run
by using the same primitives. This configuration concept is a more unified approach, as it avoids a
configuration file with a special format.

A list of pdfTEX primitives likely relevant to setting up the pdfTEX engine is given in the table
below. All primitives are described in detail in previous sections.

72

https://tug.org/kpathsea

% tex-ini-files 2016-04-15: pdftexconfig.tex
% Load shared (PDF) settings in pdfTeX

% Enable PDF output
\pdfoutput =1

% Paper size: dimensions given in absolute terms
\pdfpageheight = 11 true in
\pdfpagewidth = 8.5 true in

% Enable PDF 1.5 output and thus more compression
\pdfminorversion =5

\pdfobjcompresslevel = 2

% Low-level settings unlikely ever to need to change

\pdfcompresslevel =9
\pdfdecimaldigits =3
\pdfpkresolution = 600
\pdfhorigin = 1 true in

\pdfvorigin = 1 true in

Figure A.1: pdfTEX configuration file for TEX Live (pdftexconfig.tex).

primitive name type default comment
\pdfoutput integer 0 DVI by default
\pdfadjustspacing integer 0 off
\pdfcompresslevel integer 9 best
\pdfobjcompresslevel integer 0 no object streams
\pdfdecimaldigits integer 3

\pdfimageresolution integer 72 dpi
\pdfpkresolution integer 0

\pdfpkmode tokens empty mode per mktex.cnf
\pdfuniqueresname integer 0

\pdfprotrudechars integer 0

\pdfgentounicode integer 0

\pdfmajorversion integer 1 output PDF 1.x
\pdfminorversion integer 4 specifically PDF 1.4
\pdfpagebox integer 0

\pdfforcepagebox integer 0

\pdfinclusionerrorlevel integer 0

\pdfhorigin dimension lin

\pdfvorigin dimension lin

\pdfpagewidth dimension Opt

\pdfpageheight dimension Opt

\pdflinkmargin dimension Opt

\pdfdestmargin dimension Opt

\pdfthreadmargin dimension Opt

\pdfmapfile text pdftex.map not dumped

Figure A.1 shows a recent pdfTEX configuration file (pdftexconfig.tex) from TEX Live (part
of the tex-ini-files package), overriding some of these settings. It is read when a format is built.
It enables PDF output, sets paper dimensions and the default pixel density for PK font inclusion.
The default values are chosen so that pdfTEX often can be used (e.g., in -ini mode) without setting
any additional parameters.

Independent of whether such a configuration file is read, the first action in a pdfTEX run is

73

% Thomas Esser, 1998. public domain.
\input etex.src

\dump

\endinput

Figure A.2: The etex.ini file to dump the plain e-TEX format with DVI output.

% Thomas Esser, 1998. public domain.

% This is used for pdftex and pdfetex, which are now identical: both
% with e-TeX extensions, both with pdf output.

\input pdftexconfig.tex

\input etex.src

\input pdftexmagfix.tex

\dump

\endinput

Figure A.3: The pdfetex.ini file to dump plain e-TEX with PDF output.

reading the global Web2C configuration file (texmf .cnf), which is common to all programs in the
Web2C system. This file mainly defines file search paths, the memory layout (e.g., string pool and
hash size), and a few other general parameters.

A.5 Creating format files

The pdfTEX engine supports building separate formats for either DVI or PDF output in the same
way as the classical TEX engine does for DVI. Format generation (and other initex features) is
enabled by the -ini option. The default mode (DVI or PDF) can be chosen either on the command
line by setting the option -output-format to dvi or pdf, or by setting the \pdfoutput parameter.
The format file inherits this setting, so that a later invocation of pdfTEX with this format starts
in the preselected mode (which can still be overridden). A format file can be read in only by the
engine that has generated it; a format incompatible with an engine leads to a fatal error.

It is customary to package the configuration and macro file input into a .ini file. E.g., the file
etex.ini in figure A.2 is for generating an e-TEX format with DVI output. It has been traditional
for many years to generate etex.fmt with pdfTEX rather than the original e-TEX, because pdfTEX
contains useful additional programming and other non-PDF-related features.

The pdfetex.ini file figure A.3 shows the corresponding format with PDF output by default;
this is what creates the format file read when pdftex is normally invoked.

The corresponding pdfTEX invocations for format generation are:

pdftex -ini *etex.ini
pdftex -ini #*pdfetex.ini

These calls produce format files etex.fmt, pdfetex.fmt, as the default format file name is taken
from the input file name. You can override this with the - jobname option. The asterisk * before
the file name is an unusual flag, only used in -ini mode, which causes the pdfTEX engine to enable
e-TEX’s features.

To reiterate, the distribution (TEX Live, MiKTEX) usually takes care of format (re)generation.
The above is if you need to do such things manually for testing, debugging, development, etc.

Incidentally, as of pdfTEX 1.40.21 (TEX Live 2020), .fmt files are compressed with z1ib. This
makes for a considerable savings in space, and consequently in time.

74

A.6 Testing the installation
When everything is set up, you can test the installation. A simple test of plain pdfTEX is:
pdftex story \\end

This should typeset the famous one-page short story by A.U. Thor, generating a PDF file.
A more thorough and descriptive test is the plain TEX test file samplepdf . tex, available in the
distribution in the samplepdftex/ directory. Process this file by typing:

pdftex samplepdf

If the installation is ok, this should produce a file called samplepdf .pdf. The file samplepdf .tex
is also a good place to look for examples of how to use pdfTEX’s primitives.

A.7 Common problems

The most common problem with installations is that pdfTEX complains that some file cannot be
found. In such cases, first make sure that all TEX-related environment variables are unset. For
detailed debugging, set the environment variable KPATHSEA_DEBUG=255 before running pdfTEX or
use the option -kpathsea-debug 255. More options can be found in the Web2C documentation.

Variables in texmf . cnf can be overwritten by environment variables. Here are some of the most
common problems you can encounter when getting started:

e I can’t find the format file ‘pdftex.fmt’!
I can’t find the format file ‘pdflatex.fmt’!

The format file is not created (see above how to do that) or is not properly placed. Make
sure that TEXFORMATS in texmf .cnf contains the path to pdftex.fmt or pdflatex.fmt.
e Fatal format file error; I’m stymied

This typically appears if you forgot to regenerate the .fmt files after installing a new
version of the pdfTEX binary. The first line tells by which engine the offending format was
generated.

e pdfTEX cannot find one or more map files (*.map), encoding vectors (*.enc), virtual fonts,
Type 1 fonts, TrueType or OpenType fonts, or some image file.

Make sure that the required file exists and the corresponding variable in texmf .cnf con-
tains a path to the file.

When you have installed new fonts, and your PDF viewer complains about missing fonts,
you should take a look at the log file produced by pdfTEX. Missing fonts, map files,
encoding vectors as well as missing characters (glyphs) are reported there.

For more help resources of all kinds, see https://tug.org/begin.

75

https://tug.org/begin

Appendix B

Formal syntax specification

This appendix formally specifies the pdfTEX-specific extensions to the TEX macro programming
language. Most primitive names are prefixed by ‘pdf’. General definitions and syntax rules follow
after the list of primitives.

Two new units of measure were introduced in pdfTEX 1.30.0: the new Didot (1nd = 0.375mm)
and the new Cicero (Inc = 12nd). The former was proposed by ISO in 1975.

B.1 Integer registers

\efcode (font) (8-bit number) (integer)
\ignoreprimitiveerror (integer)
\knaccode (font) (8-bit number) (integer)
\knbccode (font) (8-bit number) (integer)
\knbscode (font) (8-bit number) (integer)
\1lpcode (font) (8-bit number) (integer)
\pdfadjustinterwordglue (integer)
\pdfadjustspacing (integer)
\pdfappendkern (integer)
\pdfcompresslevel (integer)
\pdfdecimaldigits (integer)
\pdfdraftmode (integer)
\pdfforcepagebox (integer)

\pdfgamma (integer)

\pdfgentounicode (integer)

\pdf imageapplygamma (integer)
\pdfimagegamma (integer)
\pdfimagehicolor (integer)
\pdfimageresolution (integer)
\pdfinclusioncopyfonts (integer)
\pdfinclusionerrorlevel (integer)
\pdfinfoomitdate (integer)
\pdfmajorversion (integer)
\pdfminorversion (integer)

\pdfmovechars (integer)

76

\pdfobjcompresslevel (integer)
\pdfomitcharset (integer)
\pdfomitinfodict (integer)
\pdfomitprocset (integer)

\pdfoutput (integer)

\pdfpagebox (integer)
\pdfpkresolution (integer)
\pdfprependkern (integer)
\pdfprotrudechars (integer)
\pdfsuppressptexinfo (integer)
\pdfsuppresswarningdupdest (integer)
\pdfsuppresswarningdupmap (integer)
\pdfsuppresswarningpagegroup (integer)
\pdftracingfonts (integer)
\pdfuniqueresname (integer)
\pdfuseptexunderscore (integer)
\rpcode (font) (8-bit number) (integer)
\shbscode (font) (8-bit number) (integer)
\showstream (integer)

\stbscode (font) (8-bit number) (integer)
\tagcode (font) (8-bit number) (integer)
\tracinglostchars (integer)

\tracingstacklevels (integer)

B.2 Read-only integers

\pdfelapsedtime (read-only integer)
\pdflastannot (read-only integer)
\pdflastlink (read-only integer)
\pdflastobj (read-only integer)
\pdflastxform (read-only integer)
\pdflastximage (read-only integer)
\pdflastximagecolordepth (read-only integer)
\pdflastximagepages (read-only integer)
\pdflastxpos (read-only integer)
\pdflastypos (read-only integer)
\pdfrandomseed (read-only integer)
\pdfretval (read-only integer)
\pdfshellescape (read-only integer)
\pdftexversion (read-only integer)

7

B.3 Dimen registers

\pdfdestmargin (dimen)
\pdfeachlinedepth (dimen)
\pdfeachlineheight (dimen)
\pdffirstlineheight (dimen)
\pdfhorigin (dimen)
\pdfignoreddimen (dimen)
\pdflastlinedepth (dimen)
\pdflinkmargin (dimen)
\pdfpageheight (dimen)
\pdfpagewidth (dimen)
\pdfpxdimen (dimen)
\pdfthreadmargin (dimen)
\pdfvorigin (dimen)

B.4 Token registers

\pdfpageattr (tokens)
\pdfpageresources (tokens)
\pdfpagesattr (tokens)
\pdfpkmode (tokens)

B.5 Expandable commands

\expanded (tokens) (expandable)

\ifincsname (expandable)

\ifpdfabsdim (expandable)

\ifpdfabsnum (expandable)

\ifpdfprimitive (control sequence) (expandable)

\input (general text) (expandable)

\leftmarginkern (box number) (expandable)

\pdfcolorstackinit [page] [direct] (general text) (expandable)
\pdfcreationdate (expandable)

\pdfescapehex (general text) (expandable)

\pdfescapename (general text) (expandable)

\pdfescapestring (general text) (expandable)

\pdffiledump [offset (integer)] [length (integer)] (general text) (expandable)
\pdffilemoddate (general text) (expandable)

\pdffilesize (general text) (expandable)

\pdffontname (font) (expandable)

\pdffontobjnum (font) (expandable)

\pdffontsize (font) (expandable)

\pdfincludechars (font) (general text) (expandable)

\pdfinsertht (integer) (expandable)

78

\pdflastmatch (integer) (expandable)

\pdfmatch [icase] [subcount (integer)| (general text) (general text) (expandable)
\pdfmdfivesum [file] (general text) (expandable)
\pdfnormaldeviate (expandable)

\pdfpageref (page number) (expandable)
\pdfstrcmp (general text) (general text) (expandable)
\pdftexbanner (expandable)

\pdftexrevision (expandable)

\pdfunescapehex (general text) (expandable)
\pdfuniformdeviate (number) (expandable)
\pdfxformname (object number) (expandable)
\pdfximagebbox (integer) (integer) (expandable)
\rightmarginkern (box number) (expandable)

B.6 General commands

\letterspacefont (control sequence) (font) (integer)
\partokencontext (number)

\partokenname (control sequence)

\pdfannot (annot type spec) (h, v, m)

\pdfcatalog (general text) [openaction (action spec) |
\pdfcolorstack (stack number) (stack action) (general text)
\pdfcopyfont (control sequence) (font)

\pdfdest (dest spec) (h, v, m)

\pdfendlink (h, m)

\pdfendthread (v, m)

\pdffakespace

\pdffontattr (font) (general text)

\pdffontexpand (font) (stretch) (shrink) (step) [autoexpand]
\pdfglyphtounicode (general text) (general text)

\pdfinfo (general text)

\pdfinterwordspaceoff

\pdfinterwordspaceon

\pdfliteral [shipout] [direct | page]| (general text) (h, v, m)
\pdfmapfile (map filename)

\pdfmapline (map spec)

\pdfnames (general text)

\pdfnobuiltintounicode (font)

\pdfnoligatures (font)

\pdfobj (object type spec) (h, v, m)

\pdfoutline [(attr spec)]| (action spec) [count (integer)| (general text) (h, v, m)
\pdfprimitive (control sequence)

\pdfrefobj (object number) (h, v, m)

\pdfrefxform (object number) (h, v, m)

\pdfrefximage (object number)

79

\pdfresettimer

\pdfrestore

\pdfrunninglinkoff

\pdfrunninglinkon

\pdfsave

\pdfsavepos (h, v, m)

\pdfsetmatrix

\pdfsetrandomseed (number)

\pdfspacefont (general text)

\pdfstartlink [(rule spec)] [(attr spec)] (action spec) (h, m)
\pdfthread [(rule spec)] [(attr spec)] (id spec) (h, v, m)
\pdftrailer (general text)

\pdftrailerid (general text)

\pdftstartthread [(rule spec)] [(attr spec)] (id spec) (v, m)
\pdfxform [(attr spec)] [(resources spec)]| (box number) (h, v, m)
\pdfximage [(image attrs)] (general text) (h, v, m)
\quitvmode

\special {pdf: (text)}

\special {pdf:direct: (text)}

\special {pdf:page: (text)}

\special [shipout] {{text)}

\vadjust [(pre spec)] (filler) {(vertical mode material) } (h, m)

B.7 General definitions and syntax rules

general text) — {(balanced text) }
attr spec) — attr (general text)

(
(
(resources spec) — resources (general text)
rule spec) — (width | height | depth) (dimen rule spec
g p

(object type spec) — reserveobjnum |

[useobjnum (number) |

[stream [(attr spec)]] (object contents)
annot type spec) — reserveobjnum

J

[useobjnum (number) | [(rule spec)] (general text)

)
object contents) — (file spec) | (general text)
image attrs) — [(rule spec)] [(attr spec)] [(page spec)] [(named spec)]| [(colorspace spec)]

(pdf box spec) |

{
{
[
(outline spec) — [(attr spec)] (action spec) [count (number)] (general text)
(action spec) — user (user-action spec) | goto (goto-action spec) | thread (thread-action spec)
(user-action spec) — (general text)
(goto-action spec) — [(goto-action struct spec) | (numid)
| [(file spec)] [(goto-action struct spec)] (nameid)
| [(file spec) | [(goto-action struct spec)] [(page spec)] (general text)
| (file spec) [(goto-action struct spec)]

[(nameid) | (page spec) (general text) |

(newwindow spec)

80

(goto-action struct spec) — struct ((numid) | (nameid) | (general text))
(thread-action spec) — [(file spec)] (numid) | [(file spec)] (nameid)
(colorspace spec) — colorspace (number)

(pdf box spec) — mediabox | cropbox | bleedbox | trimbox | artbox
(map spec) — { [(map modifier)] (balanced text) }

(map modifier) — + | = | -
(
(
(
(
(

dest spec) — [struct (number)] ((numid) | (nameid)) (dest type)
dest type) — xyz [zoom (number)] | fitr (rule spec) |
fitbh | fitbv | fitb | fith | fitv | fit
thread spec) — [(rule spec)| [(attr spec)] (id spec)
id spec) — (numid) | (nameid)
file spec) — file (general text)
page spec) — page (number)
named spec) — named (general text)

(
(
(
(
(
(expand spec) — (stretch) (shrink) (step) [autoexpand]
(stretch) — (number)

(shrink) — (number)

(step) — (number)

(pre spec) — pre

(

stack action) — set | push | pop | current

A (general text) is expanded immediately, like \special in traditional TEX, unless explicitly
mentioned otherwise.
Some of the object and image-related primitives can be prefixed by \immediate.

81

Appendix C

Abbreviations used 1n this manual

In this document we use numerous abbreviations. For convenience we give their meanings here.

AFM Adobe Font Metrics

ASCII American Standard Code for Information Interchange
ConTEXt general purpose macro package

CTAN global TEX archive server

DVI native TEX DeVice Independent file format
encTEX encTEX extension to TEX

epstopdf EPS to PDF conversion tool

EPS Encapsulated PostScript

Eplain Expanded plain TEX format

e-TEX a stable extension to TEX

EXIF Exchangeable Image File format (JPEG file variant)
Ghostscript PostScript and PDF language interpreter

GNU GNU’s Not Unix

HZ Hermann Zapf’s paragraph-breaking optimizations
ISO International Organization for Standardization
JBIG2 Joint Bi-level Image Experts Group image format, version 2
JBIG Joint Bi-level Image Experts Group image format
JFIF JPEG File Interchange Format

JPEG Joint Photographic Experts Group

BTEX general-purpose macro package

LMTX the LuaMetaTEX engine

LuaTEX the LuaTEX engine

MacTgX TEX Live on the Mac

METAFONT graphic programming environment, bitmap output
MetaPost graphic programming environment, vector output
MiKTEX TEX distribution for Windows

mlTEX MLTEX extension to TEX

mptopdf MetaPost to PDF conversion tool

PDF/A PDF A/* standards

pdfeTEX e-TEX extension supporting PDF output

pdfATEX ETEX format using pdfTEX, producing PDF
pdfTEX TEX extension supporting PDF output

PDF Portable Document Format

Perl Perl programming environment

82

PFA
PFB

PK

PNG
POSIX
PostScript
PStoPDF
RGB
TCX
TDS
Texinfo
TEX Live
TEX
TFM
TIFF
TUG
Unix

url
UTF-8
Web2C
WEB
Windows

XeTpX

Adobe PostScript Font format, ASCII
Adobe PostScript Font format, binary
Packed bitmap font

Portable Network Graphics

Portable Operating System Interface
general graphics language

PostScript to PDF converter (on top of Ghostscript)
red—green—blue color specification
TEX Character Translation

TEX Directory Standard

GNU documentation format

TEX Live distribution (cross-platform)
typographic language and program
TEX Font Metrics

Tagged Interchange File format

TEX Users Group, tug.org

Unix platform

Uniform Resource Locator

Uniform Resource Locator
Implementation framework for TEX and friends
literate programming environment
Microsoft Windows platform

the XeTEX engine

83

Appendix D

GNU Free Documentation License

(v1.2)

Version 1.2, November 2002
Copyright (C) 2000,2001,2002 Free Software
Foundation, Inc.

51 Franklin St, Fifth Floor, Boston, MA
02110-1301 USA

Everyone is permitted to copy and distribute
verbatim copies of this license document, but
changing it is not allowed.

Preamble

The purpose of this License is to make a man-
ual, textbook, or other functional and useful docu-
ment “free” in the sense of freedom: to assure every-
one the effective freedom to copy and redistribute
it, with or without modifying it, either commer-
cially or noncommercially. Secondarily, this License
preserves for the author and publisher a way to get
credit for their work, while not being considered
responsible for modifications made by others.

This License is a kind of “copyleft”, which means
that derivative works of the document must them-
selves be free in the same sense. It complements
the GNU General Public License, which is a copy-
left license designed for free software.

We have designed this License in order to use it
for manuals for free software, because free software
needs free documentation: a free program should
come with manuals providing the same freedoms
that the software does. But this License is not lim-
ited to software manuals; it can be used for any tex-
tual work, regardless of subject matter or whether
it is published as a printed book. We recommend
this License principally for works whose purpose is
instruction or reference.

1. APPLICABILITY AND
DEFINITIONS

84

This License applies to any manual or other
work, in any medium, that contains a notice placed
by the copyright holder saying it can be distributed
under the terms of this License. Such a notice
grants a world-wide, royalty-free license, unlimited
in duration, to use that work under the conditions
stated herein. The “Document”, below, refers to
any such manual or work. Any member of the pub-
lic is a licensee, and is addressed as “you”. You
accept the license if you copy, modify or distribute
the work in a way requiring permission under copy-
right law.

A “Modified Version” of the Document
means any work containing the Document or a
portion of it, either copied verbatim, or with mod-
ifications and/or translated into another language.

A “Secondary Section” is a named appendix
or a front-matter section of the Document that
deals exclusively with the relationship of the pub-
lishers or authors of the Document to the Docu-
ment’s overall subject (or to related matters) and
contains nothing that could fall directly within
that overall subject. (Thus, if the Document is
in part a textbook of mathematics, a Secondary
Section may not explain any mathematics.) The
relationship could be a matter of historical con-
nection with the subject or with related matters,
or of legal, commercial, philosophical, ethical or
political position regarding them.

The “Invariant Sections” are certain Sec-
ondary Sections whose titles are designated, as
being those of Invariant Sections, in the notice
that says that the Document is released under
this License. If a section does not fit the above
definition of Secondary then it is not allowed to
be designated as Invariant. The Document may
contain zero Invariant Sections. If the Document
does not identify any Invariant Sections then there
are none.

The “Cover Texts” are certain short passages

of text that are listed, as Front-Cover Texts or
Back-Cover Texts, in the notice that says that the
Document is released under this License. A Front-
Cover Text may be at most 5 words, and a Back-
Cover Text may be at most 25 words.

A “Transparent” copy of the Document means
a machine-readable copy, represented in a format
whose specification is available to the general
public, that is suitable for revising the document
straightforwardly with generic text editors or (for
images composed of pixels) generic paint programs
or (for drawings) some widely available drawing
editor, and that is suitable for input to text for-
matters or for automatic translation to a variety
of formats suitable for input to text formatters.
A copy made in an otherwise Transparent file for-
mat whose markup, or absence of markup, has
been arranged to thwart or discourage subsequent
modification by readers is not Transparent. An
image format is not Transparent if used for any
substantial amount of text. A copy that is not
“Transparent” is called “Opaque”.

Examples of suitable formats for Transparent
copies include plain ASCII without markup, Tex-
info input format, LaTeX input format, SGML
or XML using a publicly available DTD, and
standard-conforming simple HTML, PostScript or
PDF designed for human modification. Exam-
ples of transparent image formats include PNG,
XCF and JPG. Opaque formats include propri-
etary formats that can be read and edited only
by proprietary word processors, SGML or XML
for which the DTD and/or processing tools are
not generally available, and the machine-generated
HTML, PostScript or PDF produced by some word
processors for output purposes only.

The “Title Page” means, for a printed book,
the title page itself, plus such following pages as are
needed to hold, legibly, the material this License
requires to appear in the title page. For works in
formats which do not have any title page as such,
“Title Page” means the text near the most promi-
nent appearance of the work’s title, preceding the
beginning of the body of the text.

A section “Entitled XYZ” means a named
subunit of the Document whose title either is
precisely XYZ or contains XYZ in parentheses
following text that translates XYZ in another lan-
guage. (Here XYZ stands for a specific section
name mentioned below, such as “Acknowledge-
ments’, “Dedications’, “Endorsements”, or
“History”.) To “Preserve the Title” of such
a section when you modify the Document means
that it remains a section “Entitled XYZ” according
to this definition.

85

The Document may include Warranty Dis-
claimers next to the notice which states that this
License applies to the Document. These War-
ranty Disclaimers are considered to be included
by reference in this License, but only as regards
disclaiming warranties: any other implication that
these Warranty Disclaimers may have is void and
has no effect on the meaning of this License.

2. VERBATIM COPYING

You may copy and distribute the Document in
any medium, either commercially or noncommer-
cially, provided that this License, the copyright no-
tices, and the license notice saying this License ap-
plies to the Document are reproduced in all copies,
and that you add no other conditions whatsoever
to those of this License. You may not use tech-
nical measures to obstruct or control the reading
or further copying of the copies you make or dis-
tribute. However, you may accept compensation
in exchange for copies. If you distribute a large
enough number of copies you must also follow the
conditions in section 3.

You may also lend copies, under the same con-
ditions stated above, and you may publicly display
copies.

3. COPYING IN QUANTITY

If you publish printed copies (or copies in me-
dia that commonly have printed covers) of the
Document, numbering more than 100, and the
Document’s license notice requires Cover Texts,
you must enclose the copies in covers that carry,
clearly and legibly, all these Cover Texts: Front-
Cover Texts on the front cover, and Back-Cover
Texts on the back cover. Both covers must also
clearly and legibly identify you as the publisher of
these copies. The front cover must present the full
title with all words of the title equally prominent
and visible. You may add other material on the
covers in addition. Copying with changes limited
to the covers, as long as they preserve the title of
the Document and satisfy these conditions, can be
treated as verbatim copying in other respects.

If the required texts for either cover are too
voluminous to fit legibly, you should put the first
ones listed (as many as fit reasonably) on the actual
cover, and continue the rest onto adjacent pages.

If you publish or distribute Opaque copies of
the Document numbering more than 100, you must
either include a machine-readable Transparent copy
along with each Opaque copy, or state in or with
each Opaque copy a computer-network location

from which the general network-using public has
access to download using public-standard network
protocols a complete Transparent copy of the Doc-
ument, free of added material. If you use the latter
option, you must take reasonably prudent steps,
when you begin distribution of Opaque copies in
quantity, to ensure that this Transparent copy will
remain thus accessible at the stated location until
at least one year after the last time you distribute
an Opaque copy (directly or through your agents
or retailers) of that edition to the public.

It is requested, but not required, that you con-
tact the authors of the Document well before redis-
tributing any large number of copies, to give them
a chance to provide you with an updated version of
the Document.

4. MODIFICATIONS

You may copy and distribute a Modified Ver-
sion of the Document under the conditions of sec-
tions 2 and 3 above, provided that you release the
Modified Version under precisely this License, with
the Modified Version filling the role of the Docu-
ment, thus licensing distribution and modification
of the Modified Version to whoever possesses a copy
of it. In addition, you must do these things in the
Modified Version:

A. Use in the Title Page (and on the covers, if
any) a title distinct from that of the Doc-
ument, and from those of previous versions
(which should, if there were any, be listed in
the History section of the Document). You
may use the same title as a previous version
if the original publisher of that version gives
permission.

B. List on the Title Page, as authors, one or
more persons or entities responsible for au-
thorship of the modifications in the Modi-
fied Version, together with at least five of
the principal authors of the Document (all
of its principal authors, if it has fewer than
five), unless they release you from this re-
quirement.

C. State on the Title page the name of the pub-
lisher of the Modified Version, as the pub-
lisher.

D. Preserve all the copyright notices of the Doc-
ument.

E. Add an appropriate copyright notice for your
modifications adjacent to the other copyright
notices.

F. Include, immediately after the copyright no-
tices, a license notice giving the public per-
mission to use the Modified Version under
the terms of this License, in the form shown
in the Addendum below.

G. Preserve in that license notice the full lists of
Invariant Sections and required Cover Texts
given in the Document’s license notice.

H. Include an unaltered copy of this License.

I. Preserve the section Entitled “History”, Pre-
serve its Title, and add to it an item stat-
ing at least the title, year, new authors, and
publisher of the Modified Version as given on
the Title Page. If there is no section Entitled
“History” in the Document, create one stat-
ing the title, year, authors, and publisher of
the Document as given on its Title Page, then
add an item describing the Modified Version
as stated in the previous sentence.

J. Preserve the network location, if any, given in
the Document for public access to a Trans-
parent copy of the Document, and likewise
the network locations given in the Document
for previous versions it was based on. These
may be placed in the “History” section. You
may omit a network location for a work that
was published at least four years before the
Document itself, or if the original publisher
of the version it refers to gives permission.

K. For any section Entitled “Acknowledge-
ments” or “Dedications”, Preserve the Title
of the section, and preserve in the section all
the substance and tone of each of the contrib-
utor acknowledgements and/or dedications
given therein.

L. Preserve all the Invariant Sections of the
Document, unaltered in their text and in
their titles. Section numbers or the equiv-
alent are not considered part of the section
titles.

M. Delete any section Entitled “Endorsements”.
Such a section may not be included in the
Modified Version.

N. Do not retitle any existing section to be En-
titled “Endorsements” or to conflict in title
with any Invariant Section.

O. Preserve any Warranty Disclaimers.
If the Modified Version includes new front-

matter sections or appendices that qualify as
Secondary Sections and contain no material copied

86

from the Document, you may at your option des-
ignate some or all of these sections as invariant.
To do this, add their titles to the list of Invariant
Sections in the Modified Version’s license notice.
These titles must be distinct from any other section
titles.

You may add a section Entitled “Endorse-
ments”, provided it contains nothing but endorse-
ments of your Modified Version by various parties—
for example, statements of peer review or that the
text has been approved by an organization as the
authoritative definition of a standard.

You may add a passage of up to five words as a
Front-Cover Text, and a passage of up to 25 words
as a Back-Cover Text, to the end of the list of Cover
Texts in the Modified Version. Only one passage of
Front-Cover Text and one of Back-Cover Text may
be added by (or through arrangements made by)
any one entity. If the Document already includes
a cover text for the same cover, previously added
by you or by arrangement made by the same entity
you are acting on behalf of, you may not add an-
other; but you may replace the old one, on explicit
permission from the previous publisher that added
the old one.

The author(s) and publisher(s) of the Docu-
ment do not by this License give permission to use
their names for publicity for or to assert or imply
endorsement of any Modified Version.

5. COMBINING
DOCUMENTS

You may combine the Document with other
documents released under this License, under the
terms defined in section 4 above for modified ver-
sions, provided that you include in the combination
all of the Invariant Sections of all of the original
documents, unmodified, and list them all as Invari-
ant Sections of your combined work in its license
notice, and that you preserve all their Warranty
Disclaimers.

The combined work need only contain one copy
of this License, and multiple identical Invariant Sec-
tions may be replaced with a single copy. If there
are multiple Invariant Sections with the same name
but different contents, make the title of each such
section unique by adding at the end of it, in paren-
theses, the name of the original author or publisher
of that section if known, or else a unique number.
Make the same adjustment to the section titles in
the list of Invariant Sections in the license notice of
the combined work.

In the combination, you must combine any
sections Entitled “History” in the various original

documents, forming one section Entitled “His-
tory”; likewise combine any sections Entitled “Ac-
knowledgements”, and any sections Entitled “Ded-
ications”. You must delete all sections Entitled
“Endorsements”.

6. COLLECTIONS OF
DOCUMENTS

You may make a collection consisting of the
Document and other documents released under this
License, and replace the individual copies of this Li-
cense in the various documents with a single copy
that is included in the collection, provided that you
follow the rules of this License for verbatim copying
of each of the documents in all other respects.

You may extract a single document from such a
collection, and distribute it individually under this
License, provided you insert a copy of this License
into the extracted document, and follow this Li-
cense in all other respects regarding verbatim copy-
ing of that document.

7. AGGREGATION WITH
INDEPENDENT WORKS

A compilation of the Document or its deriva-
tives with other separate and independent docu-
ments or works, in or on a volume of a storage or
distribution medium, is called an “aggregate” if the
copyright resulting from the compilation is not used
to limit the legal rights of the compilation’s users
beyond what the individual works permit. When
the Document is included in an aggregate, this Li-
cense does not apply to the other works in the ag-
gregate which are not themselves derivative works
of the Document.

If the Cover Text requirement of section 3 is
applicable to these copies of the Document, then
if the Document is less than one half of the en-
tire aggregate, the Document’s Cover Texts may be
placed on covers that bracket the Document within
the aggregate, or the electronic equivalent of covers
if the Document is in electronic form. Otherwise
they must appear on printed covers that bracket
the whole aggregate.

8. TRANSLATION

Translation is considered a kind of modifica-
tion, so you may distribute translations of the Doc-
ument under the terms of section 4. Replacing
Invariant Sections with translations requires spe-
cial permission from their copyright holders, but

87

you may include translations of some or all Invari-
ant Sections in addition to the original versions of
these Invariant Sections. You may include a trans-
lation of this License, and all the license notices
in the Document, and any Warranty Disclaimers,
provided that you also include the original English
version of this License and the original versions of
those notices and disclaimers. In case of a disagree-
ment between the translation and the original ver-
sion of this License or a notice or disclaimer, the
original version will prevail.

If a section in the Document is Entitled “Ac-
knowledgements”, “Dedications”, or “History”, the
requirement (section 4) to Preserve its Title (sec-
tion 1) will typically require changing the actual
title.

9. TERMINATION

You may not copy, modify, sublicense, or dis-
tribute the Document except as expressly provided
for under this License. Any other attempt to copy,
modify, sublicense or distribute the Document is
void, and will automatically terminate your rights
under this License. However, parties who have re-
ceived copies, or rights, from you under this License
will not have their licenses terminated so long as
such parties remain in full compliance.

10. FUTURE REVISIONS OF
THIS LICENSE

The Free Software Foundation may publish
new, revised versions of the GNU Free Documenta-
tion License from time to time. Such new versions
will be similar in spirit to the present version, but
may differ in detail to address new problems or
concerns. See https://www.gnu.org/licenses, .

Each version of the License is given a distin-
guishing version number. If the Document specifies
that a particular numbered version of this License
“or any later version” applies to it, you have the
option of following the terms and conditions either
of that specified version or of any later version that
has been published (not as a draft) by the Free Soft-
ware Foundation. If the Document does not specify
a version number of this License, you may choose
any version ever published (not as a draft) by the
Free Software Foundation.

ADDENDUM: How to use this
License for your documents

88

To use this License in a document you have
written, include a copy of the License in the doc-
ument and put the following copyright and license
notices just after the title page:

Copyright © YEAR YOUR NAME.
Permission is granted to copy, dis-
tribute and/or modify this document
under the terms of the GNU Free
Documentation License, Version 1.2
or any later version published by the
Free Software Foundation; with no
Invariant Sections, no Front-Cover
Texts, and no Back-Cover Texts. A
copy of the license is included in the
section entitled “GNU Free Documen-
tation License”.

If you have Invariant Sections, Front-Cover
Texts and Back-Cover Texts, replace the “with ...
Texts.” line with this:

with the Invariant Sections being LIST
THEIR TITLES, with the Front-Cover
Texts being LIST, and with the Back-
Cover Texts being LIST.

If you have Invariant Sections without Cover
Texts, or some other combination of the three,
merge those two alternatives to suit the situation.

If your document contains nontrivial examples
of program code, we recommend releasing these ex-
amples in parallel under your choice of free software
license, such as the GNU General Public License,
to permit their use in free software.

	Introduction
	About this manual
	Legal notice
	About PDF

	Invoking pdfTeX
	Macro packages supporting pdfTeX

	Setting up fonts
	Map files
	Map lines: tfmname
	Map lines: psname
	Map lines: fontflags
	Map lines: special
	Map lines: encodingfile
	Map lines: fontfile
	Map lines: summary

	Helper tools for TrueType fonts: ttf2afm

	pdfTeX primitives
	Document setup
	\pdfoutput
	\pdfmajorversion, \pdfminorversion
	\pdfcompresslevel
	\pdfobjcompresslevel
	\pdfdecimaldigits
	\pdfhorigin
	\pdfvorigin
	\pdfpagewidth
	\pdfpageheight

	Document info and catalog
	\pdfomitinfodict
	\pdfinfo
	\pdfinfoomitdate
	\pdfsuppressptexinfo
	\pdfcatalog
	\pdfcreationdate
	\pdfnames
	\pdftrailer
	\pdftrailerid
	\pdfuseptexunderscore

	Fonts
	\pdfadjustspacing
	\pdffontexpand
	\efcode
	\pdfprotrudechars
	\rpcode, \lpcode
	\leftmarginkern, \rightmarginkern
	\letterspacefont
	\pdfcopyfont
	\pdffakespace
	\pdffontattr
	\pdffontname
	\pdffontobjnum
	\pdffontsize
	\pdfgentounicode
	\pdfglyphtounicode
	\pdfincludechars
	\pdfinterwordspaceon, \pdfinterwordspaceoff, \pdfspacefont
	\pdfmapfile
	\pdfmapline
	\pdfmovechars
	\pdfnobuiltintounicode
	\pdfnoligatures
	\pdfomitcharset
	\pdfpkmode
	\pdfpkresolution
	\pdfsuppresswarningdupmap
	\pdftracingfonts
	\pdfuniqueresname
	\tagcode

	Spacing
	\pdfadjustinterwordglue
	\knbscode
	\stbscode
	\shbscode
	\pdfprependkern
	\knbccode
	\pdfappendkern
	\knaccode

	Vertical adjustments
	\pdfignoreddimen
	\pdffirstlineheight, \pdflastlinedepth
	\pdfeachlineheight, \pdfeachlinedepth

	PDF objects
	\pdfobj
	\pdflastobj
	\pdfrefobj
	\pdfretval

	Page and pages objects
	\pdfpagesattr
	\pdfpageattr
	\pdfomitprocset
	\pdfpageref
	\pdfpageresources

	Form XObjects
	\pdfxform
	\pdfrefxform
	\pdflastxform
	\pdfxformname

	Graphics inclusion
	\pdfximage
	\pdfrefximage
	\pdflastximage
	\pdfximagebbox
	\pdflastximagecolordepth
	\pdflastximagepages
	\pdfimageresolution
	\pdfpagebox
	\pdfforcepagebox
	\pdfinclusionerrorlevel
	\pdfimagehicolor
	\pdfimageapplygamma
	\pdfgamma
	\pdfimagegamma
	\pdfpxdimen
	\pdfinclusioncopyfonts
	\pdfsuppresswarningpagegroup

	Annotations
	\pdfannot
	\pdflastannot

	Destinations and links
	\pdfdest
	\pdfstartlink
	\pdfendlink
	\pdflastlink
	\pdflinkmargin
	\pdfdestmargin
	\pdfsuppresswarningdupdest
	\pdfrunninglinkon, \pdfrunninglinkoff

	Bookmarks
	\pdfoutline

	Article threads
	\pdfthread
	\pdfstartthread
	\pdfendthread
	\pdfthreadmargin

	Literals and specials
	\pdfliteral
	\special
	\special direct
	\special page
	\special shipout

	Strings
	\pdfescapestring
	\pdfescapename
	\pdfescapehex
	\pdfunescapehex
	\pdfstrcmp
	\pdfmatch
	\pdflastmatch

	Numbers
	\ifpdfabsnum, \ifpdfabsdim
	\pdfnormaldeviate
	\pdfuniformdeviate
	\pdfrandomseed
	\pdfsetrandomseed

	Timekeeping
	\pdfelapsedtime
	\pdfresettimer

	Files
	\pdffiledump
	\pdffilesize
	\pdfmdfivesum file
	\pdffilemoddate
	\input

	Color stack
	\pdfcolorstackinit
	\pdfcolorstack

	Transformations
	\pdfsetmatrix
	\pdfsave
	\pdfrestore

	Macro programming
	\expanded
	\ifincsname
	\ifpdfprimitive
	\ignoreprimitiveerror
	\partokencontext
	\partokenname
	\pdfprimitive

	Typesetting
	\pdfinsertht
	\pdflastxpos, \pdflastypos
	\pdfsavepos
	\quitvmode
	\vadjust

	Tracing
	\showstream
	\tracinglostchars
	\tracingstacklevels

	pdfTeX execution environment
	\pdfdraftmode
	\pdfshellescape
	\pdftexbanner
	\pdftexrevision
	\pdftexversion

	Graphics
	PDF graphics
	PNG graphics
	JPEG graphics
	JBIG2 graphics
	MetaPost graphics
	TeX package graphics: picture mode, Xy-pic, tpic
	PostScript graphics: Not supported, but convertable

	Additional PDF keys: PTEX.*
	Character translation: TCX
	Installation
	Getting sources and binaries
	Compiling
	Placing files
	Configuration of pdfTeX
	Creating format files
	Testing the installation
	Common problems

	Formal syntax specification
	Integer registers
	Read-only integers
	Dimen registers
	Token registers
	Expandable commands
	General commands
	General definitions and syntax rules

	Abbreviations used in this manual
	GNU Free Documentation License (v1.2)
	1. APPLICABILITY AND DEFINITIONS
	2. VERBATIM COPYING
	3. COPYING IN QUANTITY
	4. MODIFICATIONS
	5. COMBINING DOCUMENTS
	6. COLLECTIONS OF DOCUMENTS
	7. AGGREGATION WITH INDEPENDENT WORKS
	8. TRANSLATION
	9. TERMINATION
	10. FUTURE REVISIONS OF THIS LICENSE
	ADDENDUM: How to use this License for your documents

